
Finding Short Integer Solutions When
the Modulus Is Small
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Abstract. We present cryptanalysis of the inhomogenous short integer
solution (ISIS) problem for anomalously small moduli q by exploiting the
geometry of BKZ reduced bases of q-ary lattices.

We apply this cryptanalysis to examples from the literature where
taking such small moduli has been suggested. A recent work [Espitau–
Tibouchi–Wallet–Yu, CRYPTO 2022] suggests small q versions of the
lattice signature scheme Falcon and its variant Mitaka. For one small q
parametrisation of Falcon we reduce the estimated security against sig-
nature forgery by approximately 26 bits. For one small q parametrisation
of Mitaka we successfully forge a signature in 15 s.

1 Introduction

The Short Integer Solution (SIS) problem is a computational problem that
requires one to find a non-zero short vector in a lattice from a specific class
of random lattices, known as random q-ary lattices. It was first introduced by
Ajtai [1,20] along with reductions to worst-case lattice problems. The SIS prob-
lem has emerged as fundamental to lattice-based cryptography in both theory
and practice. The above worst-case hardness reductions require the modulus q of
the SIS instance to be significantly larger than ν, its Euclidean length bound on
solutions. Given that concrete cryptographic design can be thought as a rarefied
game of chicken, one sees this requirement on q ignored with parameters pushed
towards maximal efficiency, and only constrained by documented cryptanalytic
attacks.

The SIS problem has an inhomogeneous variant (ISIS), which often holds
greater relevance in cryptanalytic contexts. In particular, forging a signature in
lattice-based signature schemes commonly constitutes solving a particular ISIS
instance.

One notable difference between the SIS and ISIS problems is that SIS becomes
trivial once q � ν. This can be demonstrated by the solution vector q · e1 which
is non-zero, in all random q-ary lattices and has length not greater than ν.
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However, q · e1 is not a solution vector for ISIS provided its target u is not
the zero vector. If u = 0 then SIS and ISIS coincide. Nevertheless, ISIS also
eventually becomes trivial as q decreases. For example, consider the ISIS instance
Ax = u mod q, where A ∈ Z

n×m
q with m � n and u ∈ Z

n
q \ {0} are chosen

uniformly. Assuming that A = (A1 |A2) is such that A1 ∈ Z
n×n
q is invertible

over Zq, then xt = (utA−t
1 |0) is non-zero and satisfies Ax = u mod q. The

first n entries of x are uniform in Z
n
q \ {0}. By reducing the coefficients of x

modulo q around 0 this solution has an expected square length of nq2/12.1 If
this is sufficiently below ν2 then it is likely that x is an ISIS solution. As such,
the following approximate observations can be made:

1. for ν < q, SIS and ISIS are similar problems and are both subject to lattice
reduction attacks,

2. for ν � q, SIS becomes trivial, but not necessarily ISIS, and
3. for ν � q

√
n/12, ISIS also becomes trivial.

This naturally leads to the question of the security of ISIS in the regime where
ν ∈ (q, q

√
n/12). We do not expect ISIS to be hard as soon as ν < q

√
n/12.

Indeed, if ν is slightly below q
√

n/12 then one can attempt an Information Set
Decoding (ISD) style of attack by randomising the columns of A1 and hoping
that after a few trials the solution xt = (utA−t

1 |0) reduced modulo q around 0
has a length slightly below its expectation.

While we find this gap in our cryptanalytic knowledge to be motivating in
its own right, recent works have proposed ISIS parameters where ν > q. In
particular small q parameter sets for the lattice signatures Falcon [22] and its
variant Mitaka [15] were proposed in [16], as well as for early parameters of a
blind signature scheme [11].2

Contributions. For the regime ν ∈ (q, q
√

n/12) we give an attack that is
essentially a hybrid of the standard lattice reduction attack when ν < q with
the ISD style attack when ν ≈ q

√
n/12. We improve this hybrid by exploiting

the many short vectors given by a lattice sieve, providing in essence many ISD
attempts with a single lattice reduction effort.

The core of the attack lies in noticing that after lattice reduction on a SIS
lattice basis, we get a profile often referred to as having a Z-shape. This reduced
basis has a number of q vectors as its first columns, q · e1, . . . , q · e�−1. By
performing lattice sieving in the first projected sublattice after the q vectors and
lifting the discovered short vectors to the non-projected lattice, we reduce the
first �−1 entries of these short vectors modulo q around 0. The square length of
a vector lifted in this manner is then the square length of the projected vector
that lifted to it, plus the square length of its first � − 1 entries. These first � − 1
entries lie in �−(q − 1)/2�, . . . , �q/2�.

On the technical level, our attack requires us to model the Z-shape of a SIS
lattice basis after lattice reduction and to count the number of integer points in
1 For simplicity we consider the expected square length of the region [−q/2, q/2]n.
2 Given early communication with the authors the parameters of [11] were revised.
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the intersection of certain hyperballs and hypercubes. We achieve the first by
using models that exist in the literature [2,14] and the latter via the efficient
convolution of truncated theta series of Z. Our model also assumes that the
lifted entries of projected vectors are independently and uniformly distributed
in �−(q−1)/2�, . . . , �q/2�. Both our modelling of the Z-shape after reduction and
our assumption on the uniformity of lifted entries are verified experimentally.

As another technical contribution we introduce an intermediate problem
between SIS and ISIS that we call SIS∗. The SIS∗ problem is identical to SIS
except it disallows solutions that are 0 mod q. In particular, if ν < q then SIS
and SIS∗ coincide, and if ν � q then it allows us to argue about the homoge-
neous version of our attack. We give a generic reduction from ISIS to SIS∗ that
increases the rank of the instance by one from m to m+1 and has a probability
loss factor approximately mq. We then give a reduction using the SIS∗ attack
we outline above that performs better: it still increments the rank but has a
probability loss factor of q/2.

As a final contribution, we present the performance of our attack against
several small q parameter sets suggested in [16]. For one parameter set suggested
for Falcon we reduce the forgery security in the CoreSVP model [4] from 118 to
92 bits. For another parameter set suggested for Mitaka we reduced the BKZ
blocksize required for forgery to β ≈ 40 and implement the attack. We also
explicitly state that we believe the attacks presented in this work are far from
optimised. As such, we suggest that appealing to the practical security of ISIS
instances with ν � q is approached with great care and, if possible, not at all.
Our code is available at https://github.com/verdiverdiverdi/ISIS-small-q.

Application Beyond SIS. An alternative interpretation of our attack can
be made directly on SIS in systematic form; A = (In ‖ A2) ∈ Z

n×m
q and one

searches for a short x ∈ Z
m \ {0} such that Ax = 0 mod q. The attacker may

ignore carefully chosen rows or columns of A. Ignoring columns is standard,
and is equivalent to fixing entries of x to 0. Let A′ denote A with some rows
removed. Assuming solutions to the original SIS instance exist, we may find a
short non-zero x ∈ {0}n × Z

m−n such that A′x = 0 mod q. Such an x does not
guarantee Ax = 0 mod q. Due to the systematic form of A one can choose xi

for 1 � i � n to ensure Ax = 0 mod q, but these xi may not be small. Our
attack consists of using the many outputs of a sieve to brute force this approach,
hoping that one solution has small enough xi.

However, we find our geometric description preferable, because it also hints
that this attack is not fundamentally limited to SIS type problems. For example,
this attack would also be applicable to Hawk [9,13] if the parameter σpk (η in the
specification version) was small. One would need to replace reduction modulo q
by Babai lifting [7], and it might no longer be possible to calculate the success
probability of the attack via theta series, but the principle remains valid. That
is, if the adversary is given vectors that are shorter than what they can find
using generic lattice reduction, then these vectors may be abused to improve
attacks. The design of Hawk anticipated this, and set σpk precisely so that the

https://github.com/verdiverdiverdi/ISIS-small-q
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vectors given to the attacker are not too short. To account for the variance in
the length of sampled vectors, keys that would be too short are also rejected.

Related Work. The general principle of considering the Z-shape basis struc-
ture is not new and is discussed in the cryptanalysis of Dilithium [19]. Due to
Dilithium’s use of the �∞ version of ISIS the Z-shape structure did not lead
to the best attacks. We take inspiration to consider the Z-shape in q-ary bases
from [2,14,17].

Organisation of the Paper. Section 2 introduces the necessary preliminaries.
Section 3 outlines our attack and our model for it against SIS∗, and Sect. 3.5
describes how we mount it on ISIS. Section 4 outlines an optimisation to the
basic attack. Section 5 provides experimental verification of two of the heuristics
in our attack, namely our modelling of the Z-shape of a SIS lattice basis after
reduction and the distribution of lifted entries. Section 6 discusses how our attack
affects the security of recent cryptosystems in the ν � q regime.

2 Preliminaries

2.1 Lattices and Computational Problems

Definition 1 (Lattice). Let B ∈ R
d×m have linearly independent columns. A

lattice Λ is the integer span of the columns of B, {B · x : x ∈ Z
m}. We say B is

a basis for Λ, Λ has dimension d and rank m, and Λ is full rank if d = m.

Definition 2 (Lattice Volume). The volume of lattice Λ with basis B is
vol(Λ) =

√
det(BtB).

If Λ is full rank then vol(Λ) = det(B). Note that the lattices generated
by B,C ∈ R

d×m are equal if and only if there exists U ∈ Glm(Z) such that
B = CU, and therefore volume is well defined.

Definition 3 (First minimum). For lattice Λ we define

λ1(Λ) = min
x∈Λ\{0}

‖x‖.

We can estimate the first minimum via the Gaussian heuristic which calcu-
lates the radius of ball whose volume equals that of the lattice.

Definition 4 (Gaussian heuristic). Let vm = πm/2/Γ(1 + m/2) be the volume
of the m dimensional unit ball. For rank m lattice Λ we estimate λ1(Λ) as
gh(Λ) = v

−1/m
m · vol (Λ)1/m ≈ √

m/2πe · vol (Λ)1/m.

Throughout we will consider projected sublattices, for which we need the
following projections.
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Definition 5 (Projections). Given a lattice basis B ∈ R
d×m and an index

1 � i � m + 1, define πB,i : Rd → R
d as the orthogonal projection against

span
R
(b1, . . . ,bi−1) (i.e. onto span

R
(b1, . . . ,bi−1)

⊥).

For any B we have πB,1 = IdRd and, if m = d, πB,m+1(Rd) = {0}. If
x ∈ span

R
(b1, . . . ,bi−1) and y ∈ R

d then 〈x, πB,i(y)〉 = 0. If the basis is clear
from context we write πi. To compute these projections one can use the Gram–
Schmidt basis related to a lattice basis B.

Definition 6 (Gram–Schmidt). Given a basis B ∈ R
d×m the Gram–Schmidt

basis B∗ ∈ R
d×m has pairwise orthogonal columns and is related to B via an

upper triangular matrix M with a unit diagonal as B = B∗ · M.

For 1 � i � m we have span
R
(b1, . . . ,bi) = span

R
(b∗

1, . . . ,b
∗
i ) and for x ∈ R

d

one can calculate πB,i(x) via

x1 = x, xj+1 = xj − 〈b∗
j ,xj〉

〈b∗
j ,b

∗
j 〉

b∗
j ,

for 1 � j � i − 1 so that πB,i(x) = xi. Note that πi(bi) = b∗
i and vol(Λ) =∏

i ‖b∗
i ‖. We use the following shorthand for projected lattices and lattice bases.

Definition 7 (Projected lattices and bases). Given basis B ∈ R
d×m and 1 �

� < r � m + 1 let B[�:r] = (π�(b�)| · · · |π�(br−1)) and Λ[�:r] = {B[�:r] · x : x ∈
Z

r−�}. If r = m + 1 we write B[�] and Λ[�].

For example

B[1] = B,

B[1:r] = (b1 | · · · |br−1),
B[�:r] = (b∗

� |π�(b�+1) | · · · |π�(br−1)).

One quantity of a basis we use throughout it its profile.

Definition 8 (Basis profile). Given a basis B ∈ R
d×m its profile is the tuple

(log‖b∗
i ‖)m

i=1 ∈ R
m.

Often we consider lattices of a particular form.

Definition 9 (q-ary lattice). For some q ∈ Z>0 a rank m lattice Λ is a q-ary
lattice if qZm ⊆ Λ ⊆ Z

m.

Solving the following (I)SIS problems can be achieved by performing certain
lattice reduction tasks over related q-ary lattices.

Definition 10 ((I)SIS). Let n ∈ N, m, q, ν be functions with domain N and
A ← U(Zn×m

q ). We suppress the dependence of m, q and ν on n.
The SISn,m,q,ν problem is to find a vector x ∈ Z

m \ {0} such that ‖x‖ � ν
and Ax = 0 mod q.

Given also u ← U(Zn
q ) the ISISn,m,q,ν problem is to find a vector x ∈ Z

m\{0}
such that ‖x‖ � ν and Ax = u mod q.
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If ϕA : Zm → Z
n
q , x �→ Ax mod q then ker(ϕA) forms a lattice called the

kernel lattice of A. Note that A is not in general a basis for this lattice.

Definition 11 (Kernel lattice and basis). Let Λ⊥
q (A) = {x ∈ Z

m : Ax = 0 mod
q} be the kernel lattice of A. If one can permute the columns of A (which relates
to a known entrywise permutation of the lattice Λ⊥

q (A)) to (A1 |A2) such that
A1 ∈ Gln(Zq) then one can form the basis

BA =
(

qIn −A−1
1 A2

0 Im−n

)
,

of Λ⊥
q (A).

Throughout, we will assume that such a permutation of the columns of A
exists and note that for prime q, if m = 2n then one exists with overwhelming
probability in n. Note that Λ⊥

q (A) has (full) rank m and volume qn. Solving a
SISn,m,q,ν instance given by A is equivalent to finding x ∈ Λ⊥

q (A) with ‖x‖ � ν.
Solving an ISISn,m,q,ν instance given by A and u is equivalent to finding b ∈ Z

m

such that Ab = u mod q and x ∈ Λ⊥
q (A) with ‖b − x‖ � ν since A(b − x) =

u − 0 mod q.
For clarity of exposition we introduce the SIS∗ problem, which we give a

reduction from ISIS to in Sect. 3.5. Trivial SIS solutions of the form q · ei are
disallowed for SIS∗.

Definition 12 (SIS∗). Let n ∈ N, m, q, ν be functions with domain N and A ←
U(Zn×m

q ). The SIS∗
n,m,q,ν problem is to find a vector x ∈ Z

m \ qZm such that
‖x‖ � ν and Ax = 0 mod q.

If ν < q then SIS and SIS∗ are equivalent problems. We make use of a
particular instance of theta functions on a lattice.

Definition 13 (Theta function of a lattice). Given a lattice Λ we write

ΘΛ(τ) =
∑

x∈Λ

eπiτ‖x‖2
,

for any τ ∈ C with Im τ > 0.

Letting X = eπiτ and suppressing the dependence on τ we see that the
coefficient of Xj2

in ΘΛ denotes the number of lattice vectors in Λ with length
j. We have

ΘZ = 1 + 2
∑

j∈Z>0

Xj2
,

and note that (ΘZ)m = ΘZm for m ∈ N.
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2.2 Reduction Algorithms

Lattice reduction algorithms take as input a basis Bpre ∈ R
d×m of lattice

Λ, some control parameters, and upon termination output a pair (B, U) ∈
R

d×m × Glm(Z) such that B = BpreU and B is a “better” basis of Λ. For
our cryptanalytic purpose we are interested in the properties of the profile after
lattice reduction. We consider the celebrated LLL [18] and BKZ [24] reduction
algorithms and heuristics that describe their behaviour on “random” lattices,
see [2] for a survey. The relevant information here is that LLL is an efficient
form of prereduction, and that BKZ is parametrised by a parameter β, where
BKZ-β finds short vectors in rank β lattices. As such, given that lattice sieves
(see Sect. 2.3) are the most efficient method known to achieve this, the cost of
BKZ grows exponentially in β.

An important quantity is the root Hermite factor which can be used to deter-
mine ‖b1‖ of a basis after BKZ-β reduction.

Definition 14 (Root Hermite factor [10]). For β � 50 let

δβ =
(

β

2πe
(πβ)1/β

)1/2(β−1)

.

For smaller values of β the root Hermite factor δβ is determined experi-
mentally. After BKZ-β reduction on basis B ∈ R

d×m of lattice Λ we estimate
‖b1‖ ≈ δm−1

β · vol (Λ)1/m. The other heuristic we use is the Geometric Series
Assumption (GSA) [25]. This asserts that after lattice reduction the Gram–
Schmidt norms decrease as a geometric series.

Definition 15 (Geometric Series Assumption). After lattice reduction on basis
B ∈ R

d×m there exists γ ∈ (0, 1) such that for 1 � i � m we have ‖b∗
i ‖ =

γi−1‖b1‖.

Given a basis Bd×m of lattice Λ, and assuming both ‖b1‖ = δm−1
β ·vol (Λ)1/m

and the GSA after BKZ-β reduction, since vol(Λ) =
∏

i ‖b∗
i ‖ = ‖b1‖m−1 ·

(γ · · · γm−1) we have γ(β) = 1/δ2β .
For our final assumption we specialise to q-ary lattices, specifically those of

the form Λ⊥
q (A) for A ∈ Z

n×m
q with basis BA, recall Definition 11. We note that

for 1 � i � n we have πi(bi) = b∗
i = q · ei. Under the root Hermite factor and

GSA heuristics we assume that after BKZ-β reduction ‖b∗
i ‖ = δm−1

β · vol (Λ) ·
γ(β)i−1 = δm−2i+1

β · vol (Λ)1/m [4, Sect. 6.3]. However in Sect. 3, we assume that

for 1 � i � n, if q < δm−2i+1
β · vol (Λ)1/m then the q vector remains and the

decrease in the profile begins only bounded away from the first indices of the
basis. This “Z-shape” phenomenon was first observed in [17] and is discussed
more in [2] and [19, App. C]; we give more detail on our use of it in Sect. 3.

2.3 Lattice Sieves

In this work a lattice sieve is an algorithm that takes as input a basis B ∈ R
d×m

of lattice Λ and outputs in time exponential in m a constant fraction, which we



Finding Short Integer Solutions When the Modulus Is Small 157

can control, of vectors in {x ∈ Λ \ {0} : ‖x‖ �
√

4/3 · gh(Λ)}. We call the set of
vectors output by a sieve its database. One expects (4/3)m/2 vectors in a sieve
database and for their lengths to concentrate around

√
4/3 · gh(Λ).

In our attack we sieve in projected sublattices Λ[�] of Λ determined by some
B[�] and then “lift” these vectors from Λ[�] to Λ following [12]. Let 1 � �−1 < m
and m′ be such that �−1+m′ = m. If a sieve is performed on B[�] then we have
a database of short vectors L ⊂ Λ[�]. Let w ∈ Λ be such that w = Bv for some
v ∈ Z

m. We may split B = (B′ |B′′) with B′ ∈ R
d×(�−1) and B′′ ∈ R

d×m′
and v

similarly. Then π�(w) = π�(B′v′)+π�(B′′v′′) = 0+B[�]v′′. We see therefore that
for w[�] ∈ L with w[�] = B[�]v[�], each lift of w[�] to Λ is of the form B′v′+B′′v[�]

for v′ ∈ Z
�−1.

The shortest w ∈ Λ such that π�(w) = w[�] is given by a particular choice
of v′. In our case, due to the geometry of our reduced bases, for every w[�] we
are able to find this choice of v′. In particular, we consider bases BA of Λ⊥

q (A)
for A ∈ Z

n×m
q . Let B = BAU be the basis after BKZ-β reduction and � be

maximal such that B′ = (q · e1 | · · · | q · e�−1). In this case we have

B′′ =
(
C
D

)
, B[�] =

(
0
D

)
,

with C ∈ Z
(�−1)×m′

and D ∈ Z
m′×m′

. If w[�] = B[�]v[�] then its shortest lift is
some

w = B′v′ + B′′v[�] =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

qv′
1

...
qv′

�−1

0
...
0

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

+

⎛

⎜
⎜⎜⎜
⎝

Cv[�]

B[�]v[�]

⎞

⎟
⎟⎟⎟
⎠

. (1)

To find the shortest lift we reduce Cv[�] modulo q centred around 0.

2.4 Elements of High Dimensional Geometry

Definition 16. We define the following geometric figures for n � 1,

i Bn(r) = {x ∈ R
n : ‖x‖ � r}, the n dimensional ball of radius r, i.e. the

dilatation of the �2 norm unit ball by a factor of r,

ii Cuben(q) =

{
{−(q − 1)/2, . . . , (q − 1)/2}n

, q odd,
{−(q − 2)/2, . . . , q/2}n

, q even.

Our Cuben(q) represents the region of shortest reductions of x ∈ Z
n modulo

q, with an arbitrary choice made in the case of even q.
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3 Attack on Small Modulus SIS

Our attack is based on two main ingredients: on the one hand a precise predic-
tion of the geometry of BKZ reduced bases of q-ary lattices, and on the other
calculating the number of integer points in the intersection of hyperballs and
hypercubes in high dimensions.

3.1 On the Z-Shape of BKZ Reduced Bases for q-ary Lattices

The Three Zones of the Z-Shape. As in the SIS problem we consider a
uniform matrix A ∈ Z

n×m
q and its associated kernel lattice Λ⊥

q (A). We refer to
its basis BA as B and apply some amount of lattice reduction to it. Initially,
the profile (�i)

m
i=1 of the basis has �i = log q for i ∈ [n] and �i = 0 for i > n,

resulting in a “Z-shape”, see Fig. 1. The profile indices are divided into three
distinct zones: Zone I, comprising of the q vectors with �i = log q, Zone II, the
“slope”, currently empty, and Zone III, the “flat tail”, with �i = 0.

LLL Reduction. As lattice reduction is applied, starting with LLL, the profile
may change, with the vector corresponding to the last vector in Zone I potentially
having a projection shorter than q and the vector corresponding to the first index
in Zone III potentially having a projection longer than 1. These indices are now
part of Zone II, where �i ∈ (0, log q). Additionally, we assume that the GSA
applies to Zone II. The LLL algorithm is partially self-dual, reducing both the
basis and the corresponding dual basis, resulting in all �i falling into these three
distinct and ordered zones, as discussed in greater detail in [2, Sect. 4.3].

BKZ Profile. We then use the stronger lattice reduction algorithm BKZ. Unlike
LLL, BKZ does not possess this partially self-dual property. However, if BKZ-β
fails to find a vector of length shorter than q within the first β columns of the
basis B, it can be asserted that �1 = log q. It has been observed that BKZ-β
reduction preserves the Z-shape and its three zones, up to a small “kink” just

Fig. 1. Initial profile of basis B.
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Fig. 2. Profile after some BKZ reduction.

Fig. 3. Profile after rerandomisation and then some BKZ reduction.

before Zone III [2], with the slope of Zone II decreasing according to the GSA, see
Fig. 2. This observation was first documented in [17]. Additionally, randomising
B can remove the q vectors from the first n columns of the basis. Applying
BKZ to such randomised bases is depicted in Fig. 3. We note that the use of
the q vectors is fundamental to our attack, so we do not randomise bases in this
manner. The application of BKZ-β to bases of the form BA, with and without
randomisation, is discussed in more detail in [19, App. C]. In what follows we
present a model for BKZ-β reduction on bases of the form BA that captures
the aforementioned Z-shape phenomenon, similar to the model presented in [14,
Heuristic. 2.8].

A Predictive Model for BKZ Profiles. Our model for predicting the basis
profile after BKZ reduction is based on the volume invariance of a lattice under
a change of basis, as in [19, App. C]. To determine the output profile, we make
two assumptions:

i. the GSA holds in Zone II, with the slope determined solely by the BKZ
blocksize β, specifically γ(β) = 1/δ2β ,

ii. despite not being a self-dual algorithm, upon completion BKZ reduction pre-
serves Zones I, II, and III, and their order.
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Using these assumptions, we construct a preliminary “extended” profile that
has more indices than the rank of the lattice. Specifically, let nq, nGSA, and n1

represent the number of vectors in Zone I, Zone II and Zone III, respectively.
The input basis has nq = n and n1 = m − n and we use the GSA to determine
nGSA. Under the GSA after BKZ-β reduction and in a log scale, Zone II begins at
index n+1 with value log q − 2 log δβ and decreases by −2 log δβ per subsequent
index. This continues until the profile takes a value in the range (2 log δ(β), 0],
which allows us to calculate nGSA as �log q/(2 log δβ)�. On a profile plot, Zone
II therefore consists of the points (nq + i, log q − 2i log δβ) for i ∈ {1, . . . , nGSA}.
The global shape of the profile is quite accurate, but the resulting (logarithm of
the) volume, that is to say, the sum of all the values in the three zones

nq∑

i=1

log q +
nGSA∑

i=1

(log q − 2i log δβ) +
m∑

i=nq+nGSA+1

0

= (n + nGSA) log q − nGSA(nGSA + 1) log δβ ,

is not equal to that of the lattice; n log(q). What remains is to find the correct
starting index of Zone II, i.e. some index smaller than n. To do so we shift a
window of indices of length m, the rank of the lattice, in increments of one, right
from {1, . . . , m} to {1 + j, . . . , m + j} for some j ∈ N. The shift j is chosen such
that the volume implied by the profile is as close to the volume of the lattice as
the discretisation of indices allows. Finally, we renormalise the profile in Zone
II so that the volume of the profile we have constructed equals the volume of
the lattice. A schematic of the entire process is given in Fig. 4. We note that one
can directly compute nq and nGSA by solving an easy system of equations, but
that this requires considering four different cases depending on the existence of
Zones I and III.

3.2 Exploiting the Z-Shape

Let B be the output of BKZ-β reduction on some basis BA and let r = min{nq +
β+1,m+1}. Our ability to predict the behaviour of the profile of B leads to the
following observation. When the modulus q is relatively small compared to the
length bound ν in SIS∗

n,m,q,ν instances, the discovery of short vectors in Λ[nq+1:r]

via sieving on B[nq+1:r] opens up avenues for new attack strategies through the
lifting techniques of [12].

Lifting Vectors in q-ary Lattices. Recall the notation of (1) and let � =
nq +1. We make the slight alteration of considering B[�:r] defining the projected
sublattice Λ[�:r] rather than B[�] defining Λ[�], and so B′ ∈ Z

m×(�−1) and B′′ ∈
Z

m×(r−�). Let w[�:r] = B[�:r]v[�:r] ∈ Λ[�:r] have square norm η2. Each lift w of
w[�:r] is of the form B′v′ + B′′v[�:r] where B′ = (q · e1 | · · · | q · e�−1).

Following (1) let w be the shortest lift of w[�:r]. The maximum square length
of w is therefore η2 + nqq

2/4 and the average case length, when the first � − 1
entries of w are uniformly distributed mod q around 0, is approximately η2 +
nqq

2/12. We note this approach relies on q vectors remaining at the beginning
of the basis over which to lift (Fig. 5).
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Fig. 4. Illustration of the moving window technique to estimate the profile of a BKZ
reduced basis B. The initial profile is constructed by setting the starting index of Zone
II as n + 1 and letting the subsequent slope be given by the GSA. Zone III continues
beyond m. Then a sliding window of length m (the dashed box) moves from its leftmost
position to the right until the closest approximation to the lattice volume is found.

Λ2

Fig. 5. Illustration of the attack in dimension 2, where we look at the projection Λ[2]

of the lattice Λ = Λ⊥
q (A) for A ∈ Z

1×2
q against the q vector (q 0)t. Lifts for the

projections within an �2 ball are depicted by horizontal dotted lines. The only two
points of Λ[2] which can be lifted to a vector of Λ in the �2 ball are highlighted by
triangles.
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On Success Probability. The above procedure returns a SIS∗
n,m,q,ν solution if

‖w‖2 � ν2, i.e. when the lifted entries have square norm less than ν2 − η2. We
make the assumption, which we experimentally verify in Sect. 5, that the first
nq entries of w are uniformly distributed in Cubenq

(q), so this success condition

is equivalent to a uniform element of Cubenq
(q) lying in Bnq

(√
ν2 − η2

)
. This

probability is precisely

p(ν, η, q, nq) =

∣∣
∣Cubenq

(q) ∩ Bnq

(√
ν2 − η2

)∣∣
∣

|Cubenq
(q)| , (2)

3.3 On Balls and Cubes

The denominator of (2) is qnq , but we require an efficient method to compute
the numerator. For this, we appeal to the theta series of Z.

Convolution of Truncated Theta. We now present a method to calculate the
number of lattice points of Znq contained in the intersection of a centered cube
and ball. Our method revolves around considering convolutions of the function
ΘZ.

We define ΘZ,N = 1 +
∑

1�j�N 2Xj2
, and for any polynomial p(X) =

∑
i∈N

αiX
i ∈ Z[X], we define pN (X) =

∑
0�i�N2 αiX

i. Note this truncates a
polynomial at its degree N2 term, similar to ΘZ,N . By definition of the product
of polynomials, ΘZ,N · ΘZ,N is a polynomial whose jth coefficient is the num-
ber of integer points of squared norm j and whose coordinates are all smaller
than or equal to N in absolute value. Hence, truncating the polynomial at its
degree M2 term and evaluating it at 1 gives exactly the number of points in
Z
2 inside the �2 ball of radius M and with coefficients smaller than or equal

to N in absolute value. That is to say, if N is even, the number of points in
Cube2(2N + 1) ∩ B2(M).3

This simple observation leads to a recursive approach that generalises it to
arbitrary dimensions. We seek to compute Θ(n), defined by Θ(1) = ΘZ,N and
Θ(i) =

(
Θ(i−1) · Θ(1)

)
M

for some n,N,M . In words, this process counts the
integer points introduced by increasing the dimension of the cube and removes
the points outside of the ball.

One may think of this truncated convolution as a product in the ring
Z[X]/(XM ). It is therefore tempting to accelerate the calculation of Θ(n) using
fast exponentiation (square-and-multiply). It turns out that the näıve iterative
approach is also competitive for the parameters at hand if one exploits the fact
that Θ(1) is a rather sparse polynomial with only

√
N non zero coefficients out

of M > N . Indeed, the former approach has a complexity of O(M2 log n) arith-
metic operations and the latter O(n ·M ·√N). With some implementation effort,

3 Even N relates to odd q = 2N + 1. Allowing for even q, where Cuben(q) is non-
symmetric, requires slightly more care. We are concerned with odd q in this work.
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the former approach could be accelerated using the Fast Fourier Transform for
convolution, leading to O(M log M log n) complexity, though this was not neces-
sary for our parameters. Furthermore, to explore the attack parameters, we will
generally want to compute Θ(n) for increasing values of n; the iterative approach
with caching perfectly fits this use case.

Alternative Approach. We also mention an alternative approach we consid-
ered for computing this numerator, at least approximately. One might forget the
discrete aspect of the problem, and simply compute the volume of the intersec-
tion between a hyperball and a hypercube. An efficient method exists [5,23] and
we implemented it,4 but found it difficult to use: it requires floating-point com-
putation with high precision and the careful truncation of infinite series. This
approach might still be preferable when the modulus q is large.

3.4 Putting It All Together

We now give the full attack in Algorithm1. We then outline how we estimate
the success probability of our attack, which is experimentally verified in Sect. 5,
and give its cost.

To estimate the success probability of Algorithm 1, we propose with two
conservative assumptions:

i. the maximum length of vectors in the projected sieve database P is
√

4/3 q,
rather than the slightly smaller

√
4/3 ‖b∗

�‖ that we would approximately
expect via the Gaussian heuristic,

ii. all (4/3)(r−�)/2 vectors in P are of this maximum length.

Recalling (2) and setting nq = � − 1 and η =
√

4/3 q, given that (q, ν) are
parameters of our SIS∗ instance, we compute p = p(ν, η, q, nq) via the methods of
Sect. 3.3. We now make the assumption that the first �−1 entries of each shortest
lift w of w[�:r] ∈ P are independent and identically distributed, implying in
particular that each lift has length shorter than ν with probability p. Hence, the
expected number of successes of the lifting event over the 4/3(r−l)/2 candidates of
P corresponds to the expectation of a binomial random variable with (4/3)(r−�)/2

trials and success probability p. It is therefore (4/3)(r−�)/2
p.

4 https://github.com/verdiverdiverdi/ball-box.

https://github.com/verdiverdiverdi/ball-box
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Algorithm 1: Z-attack outline

Input: A matrix A ∈ Z
n×m
q , a threshold value ν > 0, a BKZ

blocksize β.
Output: A solution x ∈ Z

m \ qZm such that Ax = 0 mod q and
‖x‖ � ν, or ⊥ if the attack is unsuccessful.

1 Write A as (A1 |A2) ∈ Z
n×n
q × Z

n×(n−m)
q

2 Assert A1 ∈ Gln(Zq)

3 BA ←
(

qIn −A−1
1 A2

0 Im−n

)

4 Run BKZ-β algorithm on BA, receive B
5 Let � be maximal such that B begins (q · e1 | · · · | q · e�−1)
6 if � = 1 then return b1 when b1 � ν else ⊥
7 Let r ← min{� + β,m + 1}
8 Let B = (B′ |B′′ | ∗ ) ∈ Z

m×(�−1) × Z
m×(r−�) × Z

m×(m−r+1)

9 P ←Sieve
(
Λ[�,r]

)
using B[�:r]

10 for w[�:r] ∈ P do
11 Let v[�:r] ∈ Z

r−� such that w[�:r] = B[�:r]v[�:r]

12 Find shortest w = B′v′ + B′′v[�:r], i.e. reduce the first � − 1
entries of B′′v[�:r] around 0 mod q

13 if ‖w‖ � ν then return w
14 end for
15 return ⊥

If this expected value is less than one, we rerandomise Zone II of B (in
particular, leaving the q vectors and Zone III unaltered) and repeat once again
lattice reduction to retrieve the Z-shape profile and restart the attack. Note that
p is non-decreasing if the number of q vectors remaining at the beginning of the
basis decreases. We assume that performing the sieving and lifting operation
again is independent of previous attempts.

The cost of the attack under consideration is evaluated by adopting the
CoreSVP methodology [4]. Specifically, we assume that the total cost of the BKZ
reduction and sieve in the projected sublattice can be approximated by a single
SVP oracle call. By leveraging lattice sieves, we estimate this cost to be of the
order 2cβ+o(β), where c = 0.292 [8] for a classical lattice sieve. We acknowledge
that this estimate is a simplification and underestimate, but we employ it to
facilitate comparisons to the security levels of signature schemes proposed in [16].
We note the conventional technique of unbalancing the reduction and sieving
dimensions could, in a more precise cost model, optimise our attack.

3.5 Extension to ISIS

For convenience, the attack under consideration has thus far been discussed in
the homogeneous setting. Cryptanalysing signature schemes typically requires
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one to solve ISIS. From a complexity-theoretic perspective, we demonstrate that
the inhomogeneous variant is not inherently more difficult. However, our pro-
posed reduction loses a factor of approximately mq in the success probability of
the attack. We contend that this loss is largely a consequence of the reduction
and posit that we can achieve the significantly smaller factor q/2.

A Reduction from ISIS to SIS∗. While the following reduction from ISIS to SIS
in instances where ν < q seems folklore, it has not been extensively documented
beyond a comment by Peikert.5 Below we give a similar reduction that does not
require ν < q.

Lemma 1. For prime q, if there exists adversary A solving SIS∗
n,m+1,q,ν in time

T with success probability p, then there exists adversary B solving ISISn,m,q,ν in
time T + poly(n,m, log q) with probability at least

p

(m + 1)(q − 1)
− 1

qn
.

Proof. Set m′ = m+1. For an ISISn,m,q,ν instance (A,u), B proceeds by sampling
f ← U(Z×

q ) and a uniform permutation matrix P ∈ Z
m′×m′

. Subsequently, B
creates A′ = [A|fu]·P and transmits it to A. Note that the invertibility of f and
P implies that the distribution of A′ remains uniform based on the uniformity
of (A,u). Furthermore, the distribution of A′ is independent of P and f and
follows the correct input distribution for A.

Upon receiving A′, A produces x′. With probability p, it holds that A′x′ =
0 mod q, ‖x′‖ � ν, and x′ �∈ qZm′

. Specifically, at least one coordinate of x′

must be non-zero modulo q. As such, with probability at least 1/m′, Px′ is of
the form (x, y), where x ∈ Z

m and y ∈ Z \ qZ. It further holds with probability
1/(q − 1) that f = −y−1. Notably, x has ‖x‖ � ‖Px′‖ = ‖x′‖ � ν, and if x �= 0,
it constitutes a solution to the ISISn,m,q,ν instance. To conclude, remark that
x = 0 only when u = 0, which occurs with probability 1/qn. ��

A Heuristic Improvement. We note that the above reduction transforms
generic adversaries. Our Z-shape attack implements a particular SIS∗ solver, with
a specific property on the distribution of its output: in our model some number,
greater than one, of the first entries of the output solution x′ are uniform mod
q around 0. Hence, let us assume that the SIS∗ adversary A above has the same
property and design a better reduction. In the notation of Lemma1 we fix f = 1
and P to a be permutation matrix that sets u as the first column of A′ and
ensures the first n columns are in Gln(Zq), in particular let A′ = (u | Ā). Let
the SIS∗ solution be x′ = (x′

1 |x′′). If x′
1 ∈ {1,−1} then we have solved our

ISIS instance as A′x′ = ±u + Āx′′ = 0 mod q and one may use the relevant
submatrix of P and potentially negation to recover x such that Ax = u mod q.
Note ‖x‖ = ‖x′′‖ � ‖x′‖ � ν.

5 https://crypto.stackexchange.com/questions/87097/.

https://crypto.stackexchange.com/questions/87097/
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In the above our SIS∗ solver must function in one rank higher than the original
ISIS instance and the probability that a given x′

1 ∈ {1,−1} is 2/q, i.e. the success
probability is 2/q rather than approximately 1/mq as in Lemma 1.

4 Optimisations

In this section, we introduce an optimisation to enhance the generic attack of
Algorithm 1. It employs a technique from the lattice sieving literature referred
to as “on-the-fly lifting”. This approach considers more lifts over the q vectors,
albeit at slightly longer lengths.

4.1 On the Fly Lifting

During the execution of a lattice sieve, pairs of vectors are added together to
search for new and shorter vectors. There are two main methods for this process:
a double loop over the entire current database of vectors [21] or the use of locality-
sensitive techniques to consider only pairs of vectors with a high probability of
summing to a new, shorter vector [8]. Regardless of the method used, the process
is iterative, and the lengths of vectors in the sieve database decrease over many
such searches for pairs. This means that many more vectors are considered than
ultimately inhabit the terminal sieving database. The on-the-fly lifting technique
is introduced to consider lifting some subset of these vectors, as well as those
in the terminal database, in the hope that some well-chosen excess computation
can improve the sieve’s performance [3].

We model on-the-fly lifting by considering the terminal sieve database and
performing one more iteration. Each vector encountered in that iteration, regard-
less of its length, is lifted. The number and length of these extra vectors will vary
depending on the style of sieve used. It is important to note that this surplus
iteration is not necessary in practice, as vectors of the appropriate length can
simply be lifted during the sieving procedure. However, it is conceptually cleaner.

Nguyen–Vidick Style Sieves. In Nguyen–Vidick style sieves [21] each itera-
tion of the sieve is a double loop over the database where all distinct pairs of
vectors are added and the shortest sums kept.6 Given our assumption that a
terminal sieving database on a rank β lattice Λ has size (4/3)β/2 and maximum
length

√
4/3 gh(Λ), performing a final sieving iteration visits (4/3)β vectors of

length less than
√

2 · √
4/3 gh(Λ). Specialising to Algorithm1 this means per-

forming the lifting during the sieve operation, and altering our conservative
assumptions on the success probability to stating that each vector we attempt
to lift has length

√
2 ·√4/3 q and that there are (4/3)r−� of them. We note that

while, when not considering on the fly techniques, we took complexity exponent
c = 0.292 because there was no reason to not consider the fastest lattice sieve,
6 For simplicity, one may think of including 0 in the database to allow the iteration

to keep short vectors already present in the database.
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Nguyen–Vidick sieves have asymptotic time complexity given by the exponent
c = 0.415 [21].

The Becker–Ducas–Gama–Laarhoven Sieve. Sieves that use locality sen-
sitive techniques achieve lower time complexities by considering fewer pairs of
vectors in an iteration [8]. This means that in our model that considers repeating
the final iteration of sieving on the terminal sieve database, such sieves give fewer
opportunities for on the fly lifting. On the positive side, the ability of such sieves
to forego trying so many pairs of vectors comes from mechanisms to select only
pairs that are more likely to have a short sum. In particular, the distribution of
the lengths of sums of pairs that are selected is concentrated on shorter values
than for Nguyen–Vidick style sieves. The following lemma examines the time
optimal parameters of [8]. Here a vector u is compared only with vectors w that
take angular distance not more than π/3 with some vector r, which itself takes
angular distance not more than π/3 with u.

Lemma 2. Following the notation of [8, Sect. 2] let α = 1/2 and u ∈ Sn−1 be
the centre of spherical cap Cu,α. Let r ∈ Cu,α be the centre of another spherical
cap Cr,α. The probability that uniform w ∈ Cr,α is such that ‖u − w‖ �

√
3/2 is

at least one half.

Proof. Rotate such that r = e1 and decompose u = u′ +u1r, w = w′ +w1r such
that 〈u′, r〉 = 〈w′, r〉 = 0. We have ‖u − w‖2 = ‖u′ − w′‖2 + (u1 − w1)

2 with
u1 ∈ [1/2, 1] and ‖u′‖2 = 1 − u2

1, and similarly for (w1,w′). Then ‖u − w‖2 =
‖u′‖2 + ‖w′‖2 − 2〈u′,w′〉+(u1 − w1)

2 � 3/2− 2〈u′,w′〉. We project u,w in the
cap Cr,α onto the ball of one less dimension Bn−1

(√
3/4

)
⊂ {0}×R

n−1. By the
rotational symmetry of Cr,α around the axis r, for any u and uniform w ∈ Cr,α,
the angle between u′ and w′ is uniform in [0, 2π), and therefore the inner product
above is non negative with probability one half. In this case, ‖u − w‖ �

√
3/2.

��
By scaling onto the sphere of radius

√
4/3 gh(Λ) we have

√
3/2 · √4/3 gh(Λ) =√

2 gh(Λ). We therefore change our assumptions on the success probability of
Algorithm 1, when using the sieve of [8], to each vector we attempt to lift having
length

√
2 q and there being (3/2)(r−�)/2 of them. This number of vectors comes

from the α = β = 1/2 case of [8, Sect. 7] and is less than the (4/3)r−� of the
Nguyen–Vidick sieves. Here we have complexity exponent c = 0.292.

A Possible Improvement. We note that when considering on the fly lifting
it is not necessarily the case that the lengths of vectors are concentrated around
their maximum, as opposed to the terminal database of a sieve. For example, in a
Nguyen–Vidick style sieve, if the lengths of the vectors considered during on the
fly lifting have lengths concentrated below

√
2 · √

4/3 gh(Λ) then our model is
pessimistic; taking a shorter length as an upper bound for our projected vectors
would better match reality and lower the cost of the attack.
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5 Experimental Verification

In this section we experimentally verify two heuristics used in our attack. The
first is on the behaviour of the lengths of lifted entries of vectors from a pro-
jected sieve database, which are expected to follow the uniform distribution over
Cubenq

(q). As an extension, we also verify that the total lengths of lifted vectors
match our expectations. The second heuristic of our model relates to the simu-
lation of the Z-shape after BKZ reduction. We note that we are considering the
lengths of lifted vectors without considering on-the-fly lifting, as introduced in
Sect. 4.

Experimental Toolkit. The fpylll library [26] is used for BKZ reduction
algorithm and the general sieve kernel [3,27] is used for sieving in projected
sublattices. We use the progressive BKZ algorithm [6], in which a subset of
block sizes (β′

i)i ⊂ {3, . . . , β − 1} are used in some number of BKZ-β′ tours as a
prereduction process prior to BKZ-β.

5.1 The Lengths of Lifts

In these experiments we use progressive BKZ-β with a decreasing number of
iterations as β′ < β increases. Specifically, we denote the process of running t
iterations of BKZ-β′ for β′ ∈ {l, . . . , u} by the pair (t, [l, u]), resulting in the
following sequence: (8, [3, 5]), (4, [6, 10]), (2, [11, 20]), (1, [40,∞)).

Uniformity in Cubdn(q). Following the selection of parameters n, m, q, and
a reduction parameter β for BKZ reduction such that we expect q vectors to
remain at the beginning of the basis, we perform BKZ-β reduction on a uniform
BA, resulting in B. The number of remaining q vectors in B is denoted by nq.
Next, by setting � − 1 = nq and r = max{� + β,m + 1}, we sieve in Λ[�:r] using
B[�:r], following Algorithm1. We ensure that r � m+1 so that we sieve in a rank
β projected sublattice. The number of vectors having length less than or equal to
4/3 q is denoted as N , and we ensure that this quantity is greater than (4/3)β/2.
Subsequently, the sieve database is lifted to B over the q vectors, and the length
of each lifted vector, limited to its first nq entries, is recorded as {Li}N

i=1. As in
Sect. 3.3, we can calculate the fraction of Cubenq

(q) having length less than a
given radius R, i.e.

p′(R, q, nq) =
|Cubenq

(q) ∩ Bnq
(R)|

|Cubenq
(q)| ,

similarly to (2). Further, {Li}N
i=1 is sorted as L1 � · · · � Ln, and for any i, if

there exists j < i such that Lj = Li, then we remove Lj . Ultimately, for the
remaining Li the coordinates (Li, p

′(Li, q, nq)) and (Li, i/N) are plotted. These
represent the proportion of lifts with length that is less than or equal to Li

according to our model (“Modelled proportion” in Fig. 6), and observed in our
experiments (“Experimental proportion” in Fig. 6).
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Fig. 6. For (n, m, q, β) = (120, 240, 257, 40) we check the distribution of the length of
only the lifted entries of lifted vectors, following the description of the first experiment
in Sect. 5.1.

Distribution of Total Lengths. Given the above approach we can also
consider, given a particular distribution of lengths of projected vectors in the
database of Sieve

(
Λ[�:r]

)
, the distribution of lengths of the full lifted vectors

expected by our model. Note that we must consider the distribution of the
lengths of the projected vectors since, under our model, the distributions of the
lifts of projected vectors of different lengths are themselves different. In this
case we let {Lproj,i}N

i=1 represent the lengths of the vectors in the projected
sieve database, and for each index i let {Ltotal,i}N

i=1 represent the length of the
respective entire lifted vector. We sort {Ltotal,i}N

i=1 as Ltotal,1 � · · · � Ltotal,N

and for all i if there exists j < i such that Ltotal,j = Ltotal,i we remove Ltotal,j .
For given {Lproj,i}N

i=1 and length Ltotal,k, the expected number of lifted vectors
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Fig. 7. For (n, m, q, β) = (120, 240, 257, 40) we check the distribution of the length of
the entire lifted vectors, following the description of the second experiment in Sect. 5.1.

of length less than or equal to Ltotal,k is given by

Ek =
N∑

i=1

p′
(√

L2
total,k − L2

proj,i , q, nq

)
.

We plot coordinates (Ltotal,k, Ek) and (Ltotal,k, k) as “Modelled number” and
“Experimental number” respectively in Fig. 7, the latter of which represents the
number of lifts from our experiments which have length less than or equal to
Ltotal,k.
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Table 1. For (n, m, q, β) = (120, 240, 257, β) we run the altered progressive BKZ-β
reduction described in Sect. 5.2. After β′ ∈ {5, 10, 20, 30, 40} we compute the average
number of q vectors and the standard deviation of this number over 60 experimental
trials and denote these quantities as E[X] and

√
V[X]. In the final column we give the

number of q vectors expected by the model of Sect. 3.1.

β E[X]
√

V[X] Sect. 3.1

5 41.4 2.2 45

10 31.6 1.7 33

20 19.4 1.4 22

30 13.9 1.4 15

40 9.8 1.5 12

5.2 The Z-Shape Basis

To achieve the Z-shape of Sect. 3.1 is unfortunately not a matter of simply apply-
ing lattice reduction to a basis BA. As described in [2, Fig. 6] there is a phe-
nomenon whereby, rather than Zone III consisting of Gram–Schmidt vectors
of length 1, a kink appears with vectors of Gram–Schmidt norm strictly less
than 1. These shorter than expected Gram–Schmidt vectors introduce, in the
log scale, negative terms to the sum

∑
i log‖b∗

i ‖ = n log q. This in turn, due
to the invariance of the sum, means some log‖b∗

i ‖ must be greater, potentially
leading to more q vectors than expected. Having a larger Zone I means that on
average more length is added during the lifting process, lowering the efficacy of
our attack. To avoid this we take the number of indices we expect to be in Zone
III according to our model of Sect. 3.1 and perform no lattice reduction on them.
These indices are then unchanged, and since lattice reduction preserves the real
span of the vectors of Zone I and Zone II, their Gram–Schmidt norms remain 1.
We also perform slightly heavier progressive BKZ in these experiments, denoted
by the single pair (8, [3,∞)). With the above, slightly artificial, alterations we are
able to experimentally achieve the number of q vectors expected by our model,
see Table 1. In Fig. 8 we also plot the average profile of the same experiments
against the Z-shape profile expected by our model in Sect. 3.1.

Our modified BKZ reduction process is seemingly capable of producing bases
with the expected number of q vectors, as predicted by our model. However, the
aforementioned kinks are still to some degree present for β ∈ {20, 30, 40}. The
accurate modelling of Z-shape bases remains an open question. Nevertheless, we
maintain that it would be unsatisfactory to rely on the presence of such kinks
in a basis profile for the practical security of a cryptographic scheme.
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Fig. 8. For (n, m, q, β) = (120, 240, 257, 40) we run the altered progressive BKZ-β
reduction described in Sect. 5.2 and plot the profile expected by our Z-shape model
against the average of 60 experimental profiles.



Finding Short Integer Solutions When the Modulus Is Small 173

6 Application and Practical Cryptanalysis

6.1 Small q Hash and Sign Signatures

In [16] a simple technique to reduce the bandwidth of hash and sign based
signatures such as Falcon [22] and Mitaka [15] was proposed: reduce the size of
the modulus q. Even though this technique is simple and effective, care must be
taken with regards to the choice of q, as the best attacks are dependent on q. By
framing Falcon and Mitaka as particular ISIS instances, we propose a revision of
the cryptanalysis of [16] with the attack and optimisations introduced in Sect. 3
and Sect. 4.

On Hash and Sign Signatures as ISIS. We review the underlying principles
of hash and sign signatures such as Falcon and Mitaka. The scheme involves
two keys: the signing key, which acts as a trapdoor, and enables one to solve
the approximate closest vector problem via discrete Gaussian sampling over the
lattice, and the verification key H, which can only verify whether a point belongs
to the lattice.

We provide a high-level, but incomplete, description of the signing process
for both Falcon and Mitaka. In both schemes, the public key H can be expressed
as an integer matrix with specific structure. While we do not delve into the
details of the matrix construction, the security argument crucially relies on the
decisional NTRU assumption, which loosely states that H can be viewed as a
random matrix.7

Let m = 2n. The signing algorithm hashes a message to c ∈ Z
n
q and employs

the signing key to sample s1, s2 ∈ Z
n such that s1+Hs2 = c mod q, as described

in [22, Sect. 3.9.1]. If we concatenate s1 and s2 to form s, the signature is valid
if ‖s‖ � ν for some length bound ν. This can be viewed as an ISISn,m,q,ν

instance with added structure, where A = (In |H). If we can differentiate this
ISIS instance from a uniform A, we can break the decisional NTRU assumption
discussed earlier. Note that if we express A = (A1 |A2), where A1 ∈ Z

n×n
q and

A1 ∈ Gln(Zq), we can transform this ISIS instance into one that is semantically
similar to those implied by Falcon and Mitaka via A−1

1 A = (In |A−1
1 A2). With

this view of Falcon and Mitaka as ISIS instances, we can apply our attack.

Attack Costs. In Table 2 when considering on the fly lifting we only consider
the faster sieve of [8], and recall that this optimisation was not subject to exper-
imental validation in Sect. 5. For the second entry of each pair of estimated costs
we incorporate the probability loss factor into our script by assumpting each lift
is short enough with probability reduced by a factor q/2.

An Overestimated Loss. In the next paragraph we report on experiments
that mount the above attack. In these experiments we did not multiply by the

7 Strictly speaking, the NTRU assumption only states that the number ring element
from which the matrix H can be reconstructed is indistinguishable from uniform.
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Table 2. Classical complexities of variants of our attack against signature forgery
on small q parameter sets for Falcon and Mitaka. Our n relates to d in [16], we fix
m = 2n, and F and M denote Falcon and Mitaka respectively. We report two pairs of
complexities, one without on the fly lifting and one with, denoted “no otf” and “otf”
respectively. In each pair we report in order the cost of the SIS∗ attack and the cost of
the ISIS attack, accounting for the reduction loss factor of q/2 on success probability.
The former is given between parenthesis. The final column is the suggested bit security
of the parameter set in the CoreSVP model according to [16, Table 2]. The lowest ISIS
attack cost is in boldface in each row.

(n, q, ν, scheme) no otf otf [16, Table 2]

(SIS∗) ISIS (SIS∗) ISIS

(512, 257, 801, F) (95) 98 (90) 92 118

(512, 257, 1470, M) (8) 14 (8) 12 94

(512, 521, 1141, F) (113) 115 (110) 111 121

(512, 521, 2094, M) (55) 58 (51) 54 97

(512, 1031, 1606, F) (117) 119 (120) 121 122

(512, 1031, 2945, M) (81) 84 (78) 80 99

randomising scalar f in Lemma 1 for the reasons discussed below the lemma. The
success probability of the attack appears to be higher than even the heuristic
2/q we suggest. This can be explained by the fact that vectors output by SIS∗

solvers are short, hence their coordinates are biased toward smaller values such
as 1 and −1.

We therefore reiterate our warning that the concrete results given in this
paper are only meant as a cautionary tale, and certainly not as definitive cost
estimates usable for claiming concrete security. Most likely our attack and its
analysis can be further improved. This optimisation effort is left to whoever
dares venture into the low modulus ISIS regime.

Practical Attack on Mitaka with Small q. As seen in Table 2 the cost of
the attack on the small q variant of Mitaka with n = 512 and q = 257 appears
very low, so low that not mounting the attack in practice would be indefensible.
Without on the fly lifting our script proposes as the optimal attack a blocksize
of 25 repeated 26.5 times. Due to various overheads, one might prefer to choose
a blocksize of 45 and repeat only once.

In practice, it is generally preferable to run BKZ with a smaller blocksize and
run a final sieve on a projected sublattice of a larger rank to better balance the
cost of the two procedures. We chose (by trial and error) a BKZ blocksize of 12
and a sieving rank of 60 and did not perform any on the fly lifting techniques,
rather we lifted every vector in our terminal sieve database. We also restricted
the sloped portion of the Z-shape on which we ran lattice reduction to dimension
160 to avoid having to resort to high precision floating point arithmetic in LLL.

We implemented this attack on ISIS with parameters derived from the small
q parameters for Mitaka of [16]: m = 1024, n = 512, q = 257 and ν = 1470. This
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implementation is provided in the sage script attack.sage, and relies on the
libraries fpylll and g6k [3,26,27]. It ran successfully on all 20 random instances
we launched, each taking less than 15 s on a single core (Intel(R) Core(TM)
i7-4790 CPU, 3.60GHz).
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