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Abstract. This document specifies the SOLMAE signature scheme submitted to the Korean
Post-Quantum Competition. SOLMAE is a lattice-based signature scheme following the
hash-and-sign paradigm (in the style of Gentry–Peikert–Vaikuntanathan signatures), and
instantiated over ntru lattices. In that sense, it is closely related to, and a successor of,
several earlier schemes including Ducas–Lyubashevsky–Prest (DLP), Falcon and Mitaka.
More precisely, SOLMAE offers the “best of both worlds” between Falcon and Mitaka.

Falcon has the advantage of providing short public keys and signatures (offering essentially
the best bandwidth trade-off among post-quantum constructions) as well as high security
levels; however, it is plagued by a contrived signing algorithm that makes it very difficult to
implement correctly, not very fast for signing and hard to parallelize; it also has very little
flexibility in terms of parameter settings. In contrast, Mitaka is much simpler to implement,
twice as fast in equal dimension, straightforward to parallelize and fully versatile in terms
of parameters; however, it has lower security than Falcon in equal dimension, has an even
more contrived key generation algorithm that tends to be quite slow, and has somewhat
larger keys and signatures at equivalent security levels.

SOLMAE solves the conundrum of choosing between those two schemes by offering all the
advantages of both. It uses the same simple, fast, parallelizable signing algorithm as Mitaka,
with flexible parameters. However, by leveraging a novel key generation algorithm that is
much faster and achieves higher security, SOLMAE achieves the same high security and short
key and signature sizes as Falcon. It is also compatible with recently introduced ellipsoidal
lattice Gaussian sampling techniques to further reduce signature sizes. This makes SOLMAE
the state-of-the-art in terms of constructing efficient lattice-based signatures over structured
lattices. Some further challenges are left in the conclusion.
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1 Introduction

Designing cryptographically-strong primitives such as digital signatures or key encapsulation
mechanisms, etc. are really a big challenge and could not be accomplished in a short time by
one expert. A group of smart designers must understand all the known attacks so far from the
theoretical and implementation points of view and anticipate the feasible attacks in the near future.
Our team consisting of top-level cryptographers around the world has started to suggest long-term
quantum-secure digital signature against quantum attack based on NTRU lattices, well-understood
by the cryptographic community since their introduction around two decades ago.

SOLMAE is a lattice-based signature scheme inspired by several pioneering works and stands for
quantum-Secure algOrithm for Long-term Message Authentication and Encryption. At its core, it
is based on the hash-then-sign signature paradigm proposed by Gentry, Peikert and Vaikuntanathan
[GPV08]. To be efficiently instantiated, this framework needs a class of lattices enjoying efficiently
computable trapdoor bases for the signing procedure. Ducas, Lyubashevsky and Prest [DLP14]
showed that ntru lattices are such a nice class of lattices. Signing then amounts to sampling short
Gaussian vectors in a public ntru lattice; a quasi-linear (time and memory) but complex procedure
called Fast Fourier Sampling was described by Ducas and Prest [DP16], culminating in Falcon,
one of the recent winner of the NIST call for post-quantum standards. This competitor achieves
the most compact signatures, and the most compact verification key and signatures combined sizes,
and boasts verification times on par with elliptic curves signatures.

As its name suggests, SOLMAE is inspired from Falcon’s design. Some of the new theoretical
foundations of our scheme were laid out in the presentation of Mitaka [EFG+22]. At a high-level,
it removes the inherent technicality of the sampling procedure, and most of its induced complexity
from an implementation standpoint, for free, that is with no loss of efficiency. The simplicity of our
design translates into faster operations while preserving signatures and verification keys sizes, on
top of allowing for additional features absent from Falcon, such as enjoying cheaper masking, and
being parallelizable. By using the novel compression techniques and tools of [ETWY22], we can also
obtain smaller signatures and verification keys than those already achieved by Falcon. The impact
on the security of these techniques needs to be carefully evaluated; while [ETWY22] has paved the
way for this analysis, we will implant these ingredients in future versions of SOLMAE. To sum-up,
our scheme achieves better performances for the same security and advantages as Falcon.

Two publications related with SOLMAE are:

– MITAKA paper presented at Eurocrypt2022 [EFG+22] and
– Compression paper presented at Crypto2022 [ETWY22].

1.1 Design rationale

Hybrid Sampler [Pre15]

Optimal NTRU Trapdoors

Compression Technique [ETWY22]

SOLMAE

Fig. 1: Overview of SOLMAE

Overall, SOLMAE is summarized in Figure 1.

3



More details about all the object mentioned in this section can be found later in the docu-
mentation. Here we focus on the big lines behind our scheme’s principles, keeping details at a
minimum. While its predecessor Falcon could be summed-up as "an efficient instantiation of the
GPV framework", SOLMAE takes it one step further. The ingredients behind the boxes in Figure 1
are:

– the Hybrid sampler is a faster, simpler, parallelizable and maskable Gaussian sampler to
generate signatures;

– an optimally tuned key generation algorithm, enhancing the security of our new sampler
to that of Falcon’s level8;

– dedicated compression techniques to reduce bandwith consumption even further, at no
cost on the security according to our analyses — as mentioned, these will be added in future
versions of the scheme.

As mentioned previously, part of the compression techniques are generic and without impact on the
security level. On the other hand, other techniques require to tweak the key-generation and signing
procedures. Their addition to SOLMAE’s design will appear in future versions.

The rest of the section enters more in depth about the history behind these improvements, and
the reason of their existence. For a more concrete description of the objects, the readers is deferred
to Section 3.

A quick overview of hash-then-sign over lattices Almost all hard cryptographic problems
from lattices involve either computing short vectors or decoding a target to a close lattice point,
from an arbitrarily bad description of the lattice. Hash-then-sign over lattices is no exception, as it
can be described as follows:

– a message M is hashed as a vector m = H(M) in the ambient space of a public lattice L;
– After computing a point v ∈ L quite close to H(M), a signature is s = H(M)− v;
– a pair (M, s) is valid if H(M)− s belongs to L and s is short enough.

On the one hand, only the signer should be able to efficiently compute v close enough to an arbitrary
target. This is a decoding problem that can be solved when a basis of short vectors is known. On
the other hand, anyone wanting to check the validity of a signature should be able to verify lattice
membership. The scheme therefore relies on two main ingredients:

1. the ability to generate pairs (A, B) of bases for a given lattice L, where B remains secret and
is composed of short vectors;

2. an efficient procedure exploiting B to compute signatures.

It is common to call the secret basis B a trapdoor, and in this documentation we will call (A, B) a
trapdoor pair.

Lessons learned from the first instantiation NtruSign [HHP+03] was the first hash-then-sign
signature scheme relying on lattice problems, and historically the second use of the so-called ntru
lattices [HPS98]. For small polynomials f, g ∈ Z[X]/(Xn − 1), that is, with coefficients of small
magnitude, let h = g/f mod q. One can represent h by its matrix of multiplication [h] and the
ntru lattice is then

Lntru := {(u, v) ∈ Z2d : [h]u− v = 0 mod q}.

To check lattice membership, it is enough to know h and q. In particular, by their definition, all
vectors (xif, xig) are short, and in the lattice. The authors of [HHP+03] gave an algorithm to
complete them into a full basis of Lntru (see also Section 3.2). To sign a message, the idea was
to rely on Babai’s round-off algorithm : take the coordinate of a message in the basis B, and
round them to their nearest integers to obtain a close-by lattice point. While signing was efficient,
it was soon realized that this approach was flawed beyond repair: each signature was leaking
information about B. After enough observations, an attacker could use statistical learning to recover
B itself [NR06, DN12]. The scheme was thus abandoned.
8 This corresponds to NIST-I and NIST-V requirements.
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The Gentry-Peikert-Vaikuntanathan paradigm For the purpose of this section, we will only
focus on the necessary ingredients of the GPV framework [GPV08]. More details can be found in
Section 3. The key observation is that one can get a non-leaking signature algorithm by replacing
the round-off by lattice Gaussian sampling. Such a procedure would output random vectors in Lntru
with a Gaussian-like distribution independent of the lattice basis, thwarting statistical attacks to
recover B. The authors of [GPV08] also recalled Klein’s algorithm to sample lattice Gaussians
in quadratic time, but the practical efficiency of the whole design was not really addressed. This
result was undeniably a huge step forward for hash-then-sign over lattices, however trapdoors were
now not only asked to be made of short vectors, they would also need that their Gram-Schmidt
orthogonalization was made of vectors as short as possible. This was indeed necessary to ensure
that Klein’s algorithm would output Gaussians with small variance; without such a property, it
would be easier for an adversary to forge valid signatures.

NTRU strikes again: the trapdoors of Ducas, Lyubashevsky and Prest In [DLP14], ntru-
like lattices were again the center of attention. Switching from Z[X]/(Xn−1) to a ring of cyclotomic
integers R = Z[X]/(X2n + 1), the authors observed that the algebraic structure underlying these
lattices gave strong and useful geometric constraints. Generally, the largest Gram-Schmidt vectors
of an ntru lattices would correspond to (f, g) and a completion (F, G) of the secret basis. It is
hopeless to expect any (f, g) to lead to a trapdoor basis useful for signing, but one could hope to
find a good pair reasonably fast by some kind of random walk among the set of potential keys.
Indeed, backed-up by extensive experimental confirmations, the authors gave a carefully tuned key
generation algorithm relying on Gaussian cyclotomic integers, and while their focus was a more
advanced cryptographic functionality, this was arguably the birthstone of Falcon.

Sampling: an interplay between trapdoor quality and security level Klein’s algorithm
actually suffers from its quadratic complexity in practice. Because of the algorithm’s design, it also
unfriendly to parallelization. Ducas and Prest soon realized that these limitations could be avoided
thanks to the algebraic structure of the underlying cyclotomic ring Z[X]/(X2n + 1). They described
a recursive quasi-linear approach [DP16] to Klein’s algorithm exploiting the tower structure of
the ring, in the spirit of the Fast Fourier Transform algorithm — which gave its name to their
new sampler. At the price of an intricate implementation, the resulting Gaussian sampler achieves
impressive performances, close to signing time of the other NIST winning signature, Dilithium.

A natural question is to wonder whether such complications can be avoided. There are, after all,
other approaches to lattice Gaussian sampling such as Peikert’s “randomized Round-off” [Pei10]
and Ducas-Prest’s Hybrid sampler. Both are way simpler than the Fast Fourier Sampler and even
more efficient, but the limitations of these algorithms boil down to the metric driving their quality,
that is, the variance they can achieve — recall that the smaller variance is, the better the security
is. Each sampling algorithm relies on a different metric tied to its geometric design, or in other
words, the notion of “good trapdoor” differs from a sampling algorithm to another. It was already
identified by Prest [Pre15] that Klein’s approach would always be the better choice for security,
with the hybrid being a not-so-close second and Peikert’s arriving even further. More precisely,
Prest’s experiments suggested that finding useful trapdoors for these two other approaches was
quite less likely to happen; in other words, the sparsity of good trapdoors made them expensive to
find. From these observations, Falcon’s team made the understandable choice of a better security
in general. This choice unfortunately sacrificed not only simplicity, but also side-channel resilience.

SOLMAE takes off SOLMAE’s design relies on the much simpler Hybrid sampler [Pre15], that
can fully exploit the algebraic structure underlying ntru lattices. As stated above, a simple reuse
of Falcon’s key-generation algorithm would however not be enough to go with. In [EFG+22], a
refined key generation algorithm put back the hybrid sampler into light, allowing to find better
trapdoors in time comparable to that of Falcon, while keeping mild security losses. We can in
fact go a step further: we designed a new, tailored key-generation algorithm, allowing not only
to compute hybrid sampler trapdoors more efficiently, but even drastically improving over their
quality from [EFG+22]. These ingredients are then assembled together with the new advances on
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the cryptanalysis of the underlying algorithmic problems [ETWY22] to optimize parameter sets
and minimize the bandwith consumption.

1.2 Advantages and limitations

SOLMAE enjoys the following advantages.

– Compactness: The signature size, or the combined verification key plus signature size, are
comparable to that of Falcon’s, which was the lightest in bandwith consumption among the
winning signatures in NIST’s competition. They can be further reduced by the addition of the
compression techniques of [ETWY22].

– Simplicity and efficiency: The hybrid sampler is tailored to exploit the algebraic structures
of NTRU lattices, involves only straightforward, elementary operations between polynomials,
and is practically more efficient than the FFO sampler.

– Side-channel resilience: Masking SOLMAE can be done with standard and well-understood
counter-measures, at cheaper overhead than Falcon.

On the other hand, our scheme presents some drawbacks:

– Reliance on floating point arithmetic: Just like its ancestor Falcon, our scheme relies im-
portantly on the Fourier representation of polynomials, that is, representing them by evaluation
at complex roots of unity, prompting the use for floating points arithmetic.

– Algebraically structured security assumptions: ntru lattices enjoys strong symmetries
stemming from their algebraic structure, meaning that the underlying hardness assumption
corresponds to a subclass of problems potentially easier than for plain, regular lattices. We
stress that up to current knowledge, no significant improvement on the cryptanalysis or the
asymptotic complexity are known for these problems (which is not a guarantee that none will
ever be found).

– No formal security proof: Signature schemes in the GPV framework [GPV08] were proven
resistant against forgery (sEF-CMA in qROM [BDF+11]) in a regime of parameters that differs
noticeably from SOLMAE’s (or Falcon, for that matter). Even if one relies on "the NTRU
assumption" (allowing to consider that the public key is uniformly random), the parameters of
the scheme do not follow the regime of the formal proof. This is a common discrepancy between
concrete instantiations and theoretical schemes.

2 Preliminaries

Vectors are in bold lower case, and considered in column. Matrices are in bold upper case. When
we say a matrix is a basis of a space, we mean the column vectors of the matrix are the basis. The
ℓ2-norm of a vector x = (x1, . . . , xd) is ∥x∥ = (

∑
i |xi|2)1/2 and its ℓ∞-norm is ∥x∥∞ = maxi |xi|.

Lattices A lattice is a discrete subgroup of Rn. Equivalently, it is the set of integer linear
combinations obtained from a basis B of Rn. The volume of a lattice is det B for any of its basis.

Cyclotomic powers-of-two rings For d = 2n, we let K = Q[X]/(Xd + 1) be the d-th cyclotomic
field. We will work often in the subring R = Z[X]/(Xd + 1), and sometime in the overring
KR = R[X]/(Xd + 1). Let ζj = exp(i(2j − 1)π/d) for 1 ≤ j ≤ d be the d-th primitive roots of 1,
and for all f ∈ KR, let φi(f) = f(ζi). A polynomial in KR can be represented in several ways.
A first is the so-called coefficient embedding f =

∑
fiX

i 7→ f = (f0, . . . , fd−1). Another is the
canonical embedding f 7→ φ(f) = (φ1(f), . . . , φd(f)). The map φ is also known as the Discrete
Fourier Transform (DFT) and in particular, φ maps the polynomial multiplication in KR to a
coordinate-wise multiplication. The set of f ’s such that all φi(f) ∈ R∗

+ is denoted by K++
R . We

have ∥φ(f)∥ =
√

d∥f∥. We let f∗ be the complex conjugate of f and

f∗ = f0 − fd−1X − . . .− f1Xd−1, φ(f∗) = (φi(f))i.
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A third representation of cyclotomic elements is by matrices of multiplication:

f 7→ [f ] :=


f0 −fd−1 . . . −f1
f1 f0 . . . −f2
...

. . .
...

fd−1 fd−2 . . . f0

 .

We have [f∗] = [f ]t.
In algorithms, we will write (fi)i ∈ Rd or f ∈ KR: the former highlights that the vector
of coefficient is considered, while the latter implies the Fourier representation is used.

Algebraic Gram-Schmidt For (f, g), (F, G) ∈ K2×2
R , we define ⟨(f, g), (F, G)⟩K = f∗F + g∗G.

The Gram-Schmidt orthogonalization of (F, G) ∈ K2
R with respect to (f, g) is

(F̃ , G̃) = (F, G)− ⟨(f, g), (F, G)⟩K
⟨(f, g), (f, g)⟩K

· (f, g),

and one checks that ⟨(f, g), (F̃ , G̃)⟩K = 0.

NTRU lattices Let q be an integer, and f ∈ R such that f is invertible modulo q (equivalently,
det[f ] is coprime to q). Let h = g/f mod q and consider the ntru module associated to h:

Mntru = {(u, v) ∈ R2 : hu− v = 0 mod q},

and its lattice version
Lntru = {(u, v) ∈ Z2d : [h]u− v = 0 mod q}.

This lattice has volume qd. Over R, it is generated by (f, g) and any (F, G) such that fG− gF = q.
For such a pair (f, g), (F, G), this means that Lntru has a basis of the form

Bf,g =
[
[f ] [F ]
[g] [G]

]
.

One checks that ([h],−Idd) ·Bf,g = 0 mod q, so the verification key is h. More details are given
in Section 3.2. The ntru-search problem is : given h = g/f mod q, find any (f ′ = xif, g′ = xig).
In its decision variant, one must distinguish h = g/f mod q from a uniformly random h ∈ Rq :=
Z[X]/(q, Xd + 1) = (Z/qZ)[X]/(Xd + 1). These problems are assumed to be intractable for large d.

Quality of an NTRU basis The secret basis will not be any pair, as it also needs to enable the
sampling of short Gaussian vectors in Lntru by hybrid sampling. The quality of an ntru basis Bf,g

quantifies this:

Q(f, g) = max
1≤i≤d/2

max
(
|φi(f)|2 + |φi(g)|2

q
,

q

|φi(f)|2 + |φi(g)|2

)1/2
.

Note that only half of the embeddings are needed, since the remaining ones correspond to the
complex conjugates. It is one of the main parameter driving the security of the scheme. It cannot
be lower than 1, but the closer it is to 1, the harder forgery attacks are.

Gaussian distributions The Gaussian function centered at c ∈ Rd and (positive definite)
covariance Σ is ρc,Σ(x) = exp(− 1

2 (x− c)tΣ−1(x− c)). The normal distribution Nc,Σ centered at c
and covariance Σ has density proportional to ρc,Σ . When we write x← NKR

Σ , we mean that the
corresponding d dimensional vector 1√

d
(ℜφ1(x),ℑφ1(x) . . . ,ℜφd/2(x),ℑφd/2(x)) has distribution

NΣ , where ℜz,ℑz are the real and imaginary part of the complex z. For a lattice L ⊂ Rd, the
discrete Gaussian distribution over L with parameters c ∈ Rd and Σ is defined for all x ∈ L as

DL,c,Σ(x) = ρc,Σ(x)
ρΣ(L − c) .

We omit the center if it is 0. When Σ is a scalar matrix s2I, we note Ns or DL,t,s.
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3 Specifications

We first detail the principles of the GPV framework. This highlights the necessary ingredients for
an efficient signature scheme. The next sections are devoted to the scheme’s description, and how
we instantiate the triple KeyGen, Sign, Verif. The concrete values for the many parameters to be
introduced can be found at the end of the section in Table 1.

3.1 High-level view of the SOLMAE’s signature scheme

As in any signature scheme, we need to instantiate three algorithms KeyGen, Sign and Verif.
Moreover, the GPV framework adds the following requirements:

– a class of lattices where KeyGen computes trapdoor pairs;
– Sign uses a Sample procedure to generate random vectors in these lattices, with a distribution

not leaking information about the trapdoor.

In the GPV framework, KeyGen outputs trapdoor pair (A, B) for a lattice L with AB = 0 mod q,
for a public integer q. Note that L is spanned by B. The signing-verification routine is then:

1. Sign(B, M) first uses a cryptographic hash function H to get a vector m = H(M) in the ambient
space Rm, and computes a preimage c = A−1m. Then Sample(B, c) finds a random vector
v ∈ L close to c. Thanks to the knowledge of B, the vector s = c− v is indeed short.

2. Verif(A, M, s, γ) computes m = H(M), then c′ = As mod q. If s is a valid signature, it can
be written s = c− v, and then c′ = Ac = m mod q because v ∈ L, so Verif first checks this
property. But a valid signature is also short, so Verif additionally checks that ∥s∥ does not
exceed a (public, fixed) bound γ. When these two checks are satisfied, the signature is accepted,
else it is rejected.

Of course, the resulting scheme must be efficient in practice: consume the least possible bandwith
while ensuring practically fast signing and verification timings. This implies that:

– KeyGen should give compact trapdoor pairs (that is, small bit representation);
– Sample is fast, and outputs short vectors; the shortness of the output depends on the quality of

the trapdoor.
– Sign outputs the smallest (in bitsize) possible signature from these random vectors.

Lastly, note that intuitively, the shorter the output of Sample is, the harder it is for an attacker
to forge a valid signature, so that only with the knowledge of a very good trapdoor pair should
signatures be short vectors. Technicalities start when one realizes that the notion of "good" trapdoor
highly depends on how Sample is instantiated. Optimizing this aspect is the main guiding principle
of our design, and in GPV’s instantiation in general.

3.2 Design of KeyGen

For the class of ntru lattices, a trapdoor pairs is (h, Bf,g), and Prest & Pornin showed that a
completion (F, G) can be computed in O(d log d) time from f, g. In practice their implementation is
as efficient as can be for this technical procedure: it is called NtruSolve in Falcon. Their algorithm
only depends on the underlying ring and has now a stable version for Z[X]/(Xd + 1), where d = 2n.
We therefore reuse it in our design.

An important concern here is that not all pair (f, g), (F, G) gives good trapdoor pairs for Sample.
Schemes such as Falcon and Mitaka solve this technicality essentially by sieving among all
possible bases to find the ones that reach an acceptable quality for the Sample procedure. This
technique is costly, and many tricks were used to achieve an acceptable KeyGen. We totally bypass
this sieving routine by redesigning completely how good quality bases can be found — see the next
section for details. This improves the running time of KeyGen, and also increases the security offered
by Sample. In any case, note that NtruSolve’s running time largely dominates the overall time for
KeyGen: this is not avoidable as the basis completion algorithm require to work with quite large
integers and relatively high-precision floating-point arithmetic.
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At the end of the procedure, the secret key contains not only the secret basis, but also the
necessary data for Sign and Sample. This additional information can be represented by elements
in KR, and is computed during or at the end of NtruSolve. All-in-all, KeyGen outputs:

sk = (b1 = (f, g), b2 = (F, G), b̃2 = (F̃ , G̃), Σ1, Σ2, β1, β2),
pk = (h, q, σsig, η),

where we recall that h = g/f mod q. These parameters are described more thoroughly in Section 3.3
and 3.4. A list of their practical value is given in Table 1. Informally, they correspond to the
following:

– (f, g), (F, G) is a good basis of the lattice Lntru associated to h, with quality Q(f, g) = α, and
b̃2 is the Gram-Schmidt orthogonalization of (F, G) with respect to (f, g);

– σsig, η are respectively the standard deviation for signature vectors, and a tight upper bound
on the "smoothing parameter of Zd";

– Σ1, Σ2 ∈ KR represent covariance matrices for two intermediate Gaussian samplings in Sample;
– the vectors β1, β2 ∈ K2

R represent the orthogonal projections from K2
R onto KR · b1 and KR · b̃2

respectively. In other words, they act as "getCoordinates" for vectors in K2
R. They are used by

Sample, and are precomputed for efficiency.

Specifications of KeyGen: Algorithm 1 computes the necessary data for signature sampling,
then outputs the key pair. Note that NtruSolve could also compute the sampling data and the
public key, but for clarity, the pseudo-code gives these tasks to KeyGen. Figure 2 sketches the key
generation procedure.

KeyGen (Algorithm 1, page 10)

PairGen (Algorithm 2, page 11) NtruSolve [PP19] Precomputation: Σ1, Σ2, β1, β2

UnifCrown (Algorithm 9, page 15)

Fig. 2: Flowchart of KeyGen.

The two subroutines PairGen (Algorithm 2) and NtruSolve are described below.

1. The PairGen algorithm generates d complex numbers (xjeiθj )j≤d/2, (yjeiθj )j≤d/2 to act as the
FFT representations of two real polynomial fR, gR in KR. The magnitude of these complex
numbers are sampled in a planar annulus whose small and big radii are set to match a target
Q(f, g) with UnifCrown (see also Section 3.6). It then finds close elements f, g ∈ R by round-off,
unless maybe the rounding-error was too large. When the procedure ends, it outputs a pair
(f, g) such that Q(f, g) = α, where α depends on the security level.

2. NtruSolve is exactly Prest & Pornin’s algorithm and implementation [PP19]. It takes as input
(f, g) ∈ R2 and a modulus q, and outputs (F, G) ∈ R2 such that (f, g), (F, G) is a basis of Lntru
associated to h = g/f mod q. It does so by solving the Bézout-like equation fG− gF = q in R
using recursively the tower of subfields for optimal efficiency.

Specifications of PairGen: This algorithm is a new addition to schemes such as Mitaka. The
ntru module associated to a public key h is morally a 2-dimensional object. When q is the modulus
of the lattice and (f, g), (F, G) is a basis, we have

detMntru = (ff∗ + gg∗)(F̃ F̃ ∗ + G̃G̃∗) = q2 ∈ R,

9



Algorithm 1: KeyGen
Input: A modulus q, a target quality parameter 1 < α, parameters σsig, η > 0
Output: A basis ((f, g), (F, G)) ∈ R2 of an ntru lattice Lntru with Q(f, g) = α;
// Secret basis computation:
repeat

b1 := (f, g)← PairGen(q, α, R−, R+);
until f is invertible modulo q;
b2 := (F, G)← NtruSolve(q, f, g);

// Public key data computation:
h← g/f mod q;
γ ← 1.1 · σsig ·

√
2d; /* tolerance for signature length */

// Sampling data computation, in Fourier domain:
β1 ← 1

⟨b1,b1⟩K
· b1;

Σ1 ←
√

σ2
sig

⟨b1,b1⟩K
− η2;

b̃2 := (F̃ , G̃)← b2 − ⟨β1, b2⟩ · b1;
β2 ← 1

⟨̃b2 ,̃b2⟩K

· b̃2;

Σ2 ←
√

σ2
sig

⟨̃b2 ,̃b2⟩K

− η2;

sk← (b1, b2, b̃2, Σ1, Σ2, β1, β2);
pk← (q, h, σsig, η, γ);
return sk, pk;

the same way the area of a rectangle is the product of its length and width. This means that all
the information about F̃ F̃ ∗ + G̃G̃∗ is determined by (f, g) and q, and this explains why only (f, g)
is needed to know the quality of the basis found by NtruSolve. Recall from Section 2 that the
quality is

α := Q(f, g) = max
1≤i≤d/2

max
(
|φi(f)|2 + |φi(g)|2

q
,

q

|φi(f)|2 + |φi(g)|2

)1/2
.

Equivalently, a basis has quality α when for all i ≤ d/2, we have
q

α2 ≤ |φi(f)|2 + |φi(g)|2 ≤ α2q. (1)

As this is determined by the evaluations of the polynomials f, g, or equivalently, by their FFT
representations, it is natural to sample directly these polynomials via their complex evaluations.
This is handled by a subroutine UnifCrown, described in Section 3.6, Algorithm 9.

A hiccup is that inverting the FFT leads a priori only to real polynomials fR, gR ∈ KR. We thus
have to round the coordinates of fR, gR to their nearest integers which incurs a small error. We
handle this error by sampling fR, gR in FFT-format in a smaller annulus (or crown) with radii

R− =
(

1
α

+ δ

)
√

q and R+ = (α− δ)√q,

where δ is a small correction parameter to ensure that the rounding will stay in the correct crown
A(√q/α, α

√
q) with large probability. In practice we take δ512 = 0.065 and δ1024 = 0.3, values that

are set so that ≈ 80 tries in average for d = 512, resp. ≈ 5 tries in average for d = 1024, of the
decoded polynomials (f, g) satisfy Equation 1.

Let us explain the determination of these values. The decoding errors can be accurately modelled
as continuous 2-dimensional Gaussian vectors. This means that in average, the decoding makes an
error proportional to the standard deviation of these Gaussians, which are heuristically identically
and independently distributed. Thanks to the good concentration properties of Gaussians, we can
fine-tune the tolerance with standard calculations, that match with experimental observations. This
leads to PairGen below, where the target quality is by default α512 = 1.17 and α1024 = 1.64.
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Algorithm 2: PairGen
Input: A modulus q, a target quality parameter 1 < α, two radii parameters 0 < R− < R+
Output: A pair (f, g) with Q(f, g) = α
for i = 1 to d/2 do

xi, yi ← UnifCrown(R−, R+) ; /* see Algorithm 9 */
θx, θy ← U(0, 1);
φf,i ← |xi| · e2iπθx ;
φg,i ← |yi| · e2iπθy ;

end

(fR, gR)←
(

FFT-1((φf,i)i≤d/2), FFT-1((φg,i)i≤d/2)
)
;

(f , g)← (⌊fR
i ⌉)i≤d/2, (⌊gR

i ⌉)i≤d/2;

(φ(f), φ(g))← (FFT(f), FFT(g));
for i = 1 to d/2 do

if q/α2 > |φi(f)|2 + |φi(g)|2 or α2q < |φi(f)|2 + |φi(g)|2 then
restart;

end
end
return (f , g);

3.3 Design of Sign:

Recall that ntru lattices live in R2d. Their structure also helps to simplify the preimage computation.
Indeed, the signer only needs to compute m = H(M) ∈ Rd, as then c = (0, m) is a valid preimage:
the corresponding polynomials satisfy (h, 1) · c = m.

Another interesting feature is that only the first half of the signature (s1, s2) ∈ Lntru needs to
be sent along the message, as long as h is available to the verifier. This comes from the identity
hs1 = s2 mod q defining these lattices, as we will see in the Verif algorithm description. 9

Because of their nature as Gaussian integer vectors, signatures can be encoded to reduce the size
of their bit-representation. The standard deviation of Sample is large enough so that the ⌊log√q⌋
least significant bits of one coordinate are essentially random. In Falcon, the most significant bits
(MSB’s) of each coordinate are then sent through an unary (or Huffman) encoding together with
their corresponding tails, which already save a nice portion of bandwith. This generic approach is
summed-up as the Compress and Decompress functions in Section 3.6.

Following [ETWY22], we can go a step further by noticing that instead of encoding each sets of
MSB’s separately, we can batch-encode them as a whole using for example Asymmetric Numeral
Systems (ANS). Our signatures then enjoy an additional 7− 12% compression factor. This will be
implemented in future version of SOLMAE.

In the description above, the scheme cannot output two different signatures for a message. This
well-known concern of the GPV framework can be addressed in several ways, for example making a
stateful scheme or by hash randomization. Like Falcon, we chose the latter solution for efficiency
purpose. In practice, Sign adds a random “salt” r ∈ {0, 1}k, where k is large enough that an
unfortunate collision of messages is unlikely to happen, that is, it hashes (r||M) instead of M —
our analysis in this regard is identical to Falcon. A signature is then sig = (r, Compress(s1)).

Figure 3 sketches the signing procedure.

Specifications of Sign: The signing algorithm Sign handles the hash and the Fourier conversions,
leaving the important task of generating the signature vectors to Sample. The hash function is
instantiated as explained in Section 3.6. It also generates the salt r ∈ {0, 1}k; the length of the
salt is obtained by standard conversions from a conservative target bit-security and the maximum
number of queries qs = 264 as k = 320 = 256 + log qs.

The parameter η is selected as a tight upper bound on the smoothing parameter ηϵ(Zd), for some
ϵ > 0. Informally, this parameter quantifies the amount of noise to smooth out the discreteness
9 The same identity can also be used to check the validity of signatures only with a hash of the public key

h, requiring this time send both s1 and s2, but we will not consider this setting in this documentation.
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Sign (Algorithm 3, page 12)

Sample (Algorithm 4, page 13) Compress (Algorithm 11, page 16)

PeikertSampler (Algorithm 5, page 13)

N-Sampler (Algorithm 10, page 15) Z-Sampler [PFH+20]

Fig. 3: Flowchart of Sign.

of lattice Gaussian vectors. The value of ϵ is deduced following [Pre17, EFG+22] and nowadays
standard Renyi divergence arguments. The corresponding value for η is then

ϵ = 2−41 and η = 1
π

√
1
2 · log

(
2d

(
1 + 1

ϵ

))
.

Concretely, we have η512 ≈ 1.338 and η1024 ≈ 1.351. The output is a Gaussian vector v ∈ Lntru
centered at c = (0, H(r||M)); the parameter σsig determines the expected distance from v to its
center, and therefore drives the hardness of forgery. Its value is determined from [Pre15, EFG+22]:

σsig = η · Q(f, g) · √q.

Algorithm 3: Sign
Input: A message M ∈ {0, 1}∗, a tuple sk = ((f, g), (F, G), (F̃ , G̃), σsig, Σ1, Σ2, η), a

rejection parameter γ > 0.
Output: A pair (r, Compress(s1)) with r ∈ {0, 1}320 and ∥(s1, s2)∥ ≤ γ.
r ← U({0, 1}320);
c← (0, H(r||M));
ĉ← FFT(c);
repeat

(ŝ1, ŝ2)← ĉ− Sample(ĉ, sk);
// (s1, s2)← DLntru,c,σsig

until ∥(FFT-1(ŝ1), FFT-1(ŝ2))∥2 ≤ γ2;
s1 ← FFT-1(ŝ1);
s← Compress(s1);
return (r, s);

The sampling of the signature vector in Algorithm 3 is a cascade of different sampling algorithms,
Sample, PeikertSampler, and at the deepest level, Z-Sampler. Their specifications follow.

3.4 Design of Sample:

Our second main change from Falcon is to rely on the hybrid sampler for the Sample procedure.
To make sense of this change, we give the briefest possible outline of Lattice Gaussian sampling —
as the sampling of signature ultimately is the whole core of the entire “fast-GPV” design, this is
anyway a required paragraph.

Such algorithms are usually seen as randomized decoding procedure. Babai described two well-
known lattice decoding algorithms: the round-off and the nearest-plane. Staying informal, the first
just round coordinates of the target in the lattice basis to their nearest integer, while the second is
more fine-grained and round the Gram-Schmidt coordinates of the target iteratively, correcting the

12



deviation from the original lattice basis with each decoding step. By randomizing the rounding using
Gaussian integers, one obtains either Peikert’s sampler [Pei10] or Klein’s sampler [Kle00, GPV08].
The former is more efficient over ntru lattices, but suffer from a lack of good trapdoors. In other
words, signatures are longer with this approach. The latter compensates its lack of efficiency by
large sets of very good trapdoors, and therefore almost optimal signature lengths. As we mentioned,
if one accepts a delicate and practically unmaskable implementation involving tree data structures,
this drawback can be mitigated.

The hybrid sampler stands in-between, both in efficiency and signature lengths: the Gram-
Schmidt orthogonalization and randomized decoding are both done at the ring level, so that
the algorithm can be seen as a combination of Klein and Peikert’s approach. In particular, only
two decoding steps are done for ntru lattices, compared to 2d for the FFO sampler, and the
randomization is handled by Peikert’s algorithm in the ring, which runs in quasi-linear time: this
explains its overall better efficiency. On its first analysis [Pre15], it seemed that good trapdoor for
this sampler were costlier to find. Thanks to our new KeyGen algorithm, this is no more a concern,
and we are now able to enjoy all the pros that the hybrid sampler brings versus the FFO sampler:
it is way simpler to implement, it is more efficient, it is more friendly to parallelization. Moreover,
its masking can be done with standard, well-understood techniques [EFG+22] and online-offline
approaches, since the tree structure is now entirely avoided.

Specifications of Sample: Sample is an instantiation of the hybrid sampler [Pre15, EFG+22],
and can be seen as 2-step randomized decoding, with randomization happening at the ring level,
or morally, in a d-dimensional space. In Algorithm 4 below, note that all operations are done in
Fourier domain.

Algorithm 4: Sample
Input: A target c = (0, c′) ∈ K2

R, a tuple
sk = (b1 = (f, g), b2 = (F, G), b̃2 = (F̃ , G̃), σsig, Σ1, Σ2, β1, β2).

Output: A vector v ∈ Lntru with distribution statistically close to DLntru,c,σsig .
t← c, v← 0;
for i = 2 to 1 do

ti ← ⟨βi, t⟩K ;
zi ← PeikertSampler(ti, Σi, η) ; /* zi ← D

R,ti,
σ2
sig

⟨b̃i,b̃i⟩

*/

t← t− zibi, v← v + zibi;
end
return v;

The randomization is done by a call to PeikertSampler (see Algorithm 5), which outputs
elements in R with a Gaussian distribution of suitable covariance matrices. In Fourier domain, these
covariance matrices are diagonal, and can then be represented by a vector of complex numbers.
From Section 3.2, we view σsig as a constant in KR, and the intermediate standard deviation
parameters are

Σi =

√
σ2
sig

⟨b̃i, b̃i⟩
− η2 ∈ KR.

By choice of σsig, they correspond in Fourier domain to positive definite matrices, actually diagonal
with entries the embeddings of Σi. The square roots are then easily computed coordinate-wise.

Specifications of PeikertSampler: Again, input, output as well as arithmetic operations are all
done in Fourier representation. The principle of PeikertSampler is a perturbation-based sampling.
This translates concretely as a continuous, elliptic Gaussian sampling which is easy to handle in
Fourier domain with enough precision, combined with a spherical, discrete Gaussian sampling of
width η, showcased in Algorithm 5. The latter is handled by d calls to Z-Sampler.
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Algorithm 5: PeikertSampler
Input: A target t ∈ KR, parameters Σ, η ∈ K++

R .
Output: A vector v ∈ R with distribution statistically close to DR,t,σ, where σ =

√
Σ2 + η2.

p← Σ · NKR
1 ; /* p← NKR

Σ2 , done with N-Sampler (Algorithm 10) */
(p1, . . . , pd)← FFT-1(p) ; /* (pi)i ∈ Rd */

(t1, . . . , td)← FFT-1(t) ; /* (ti)i ∈ Zd */
for i = 1 to d do

xi ←Z-Sampler(ti − pi, η);
end
return FFT(x1, . . . , xd);

By definition of the parameters, the calls to Algorithm 5 in Algorithm 4 output two ring elements
with respective covariance σ2

sig/⟨b̃i, b̃i⟩K , in Fourier representation.

Specifications of Z-Sampler: This step is surprisingly delicate. We reuse the ingenious method
of Falcon, and refer to their documentation [PFH+20] for the details about the parameters. Below,
we give only an informal description of the necessary steps based on [ZSS20, HPRR20].

The first concern is the necessity to sample around an arbitrary center c ∈ R. A technique
is to first identify it to its fractional part {c} ∈ [0, 1), and to then use a rejection approach to
allow a sampling centered around 0 instead. This implies computations of the rejection probability,
which involve the exponential function and must be done efficiently at a high enough floating-point
precision. Next, the sampling uses a Cumulative Distribution Table (CDT) approach (also known
as an inversion-based sampler). Space is saved by using the CDT of a half Gaussian distribution
combined to a Bernoulli sampler to obtain the sign of the output.

3.5 Design of Verif:

The last step of the scheme is thankfully simpler to describe. Upon receiving a signature (r, s) and
message M , the verifier decompresses s to a polynomial s1 and c = (0, H(r||M)), then wants to
recover the full signature vector v = (s1, s2). If v is a valid signature, the verification identity is
(h,−1) · (c− v) = −H(r||M)− hs1 + s2 mod q = 0, or equivalently the verifier can compute

s2 = H(r||M) + hs1 mod q.

This is computed in the ring Rq, and can be done very efficiently for a good choice of modulus q
using the Number Theoretic Transform (NTT). We currently follow the standard choice (like in
Falcon) of q = 12289, as the multiplication in NTT format amounts to d integer multiplications
in Z/qZ. In future versions, we will consider different trade-offs between verification efficiency and
public-key size. The last step is to check that ∥(s1, s2)∥2 ≤ γ2: the signature is only accepted in
this case.

The rejection bound γ comes from the expected length of vectors outputted by Sample. Since
they are morally Gaussian, they concentrate around their standard deviation; a “slack” parameter
τ = 1.042 is tuned to ensure that 90% of the vectors generated by Sample will get through the loop:

γ = τ · σsig ·
√

2d.

3.6 Miscellanous

In this section we define several supporting algorithms invoked by KeyGen, Sign, and Verif.
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Algorithm 6: Verif
Input: A signature (r, s) on M , a public key pk = h, a bound γ.
Output: Accept or reject.

s1 ← Decompress(s);
c← H(r||M);
s2 ← c + hs1 mod q;
if ∥(s1, s2)∥2 > γ2 then

return Reject.
end
return Accept.

Specifications of FFT and FFT-1: Algorithm 7 and Algorithm 8 respectively show the compu-
tation of FFT and its inverse over KR.

Algorithm 7: FFT
Input: f ∈ KR = R[X]/(Xd + 1).
Output: the FFT representation of f

ζ = exp(iπ/d);
φ(f)← (f(ζ1), f(ζ3), · · · , f(ζ2d−1));
return φ(f)

Algorithm 8: FFT-1

Input: c = (c0, · · · , cd−1) ∈ Cd such that cd−1−i = ci.
Output: f ∈ KR such that c = φ(f)

ζ = exp(iπ/d);
V =

(
ζjk
)

j∈Zd,k∈Z∗
2d

;

f ← 1
d ·Vc;

return f

Specifications of UnifCrown: Algorithm 9 below outputs a uniformly random element in a
fixed planar annulus A(R−, R+) = {(x, y) ∈ R2 : R2

− ≤ x2 + y2 ≤ R2
+}, from uniformly random

numbers in (0, 1) — that is, uniform in the set of floating point numbers with given mantissa and
exponent inside (0, 1).

Algorithm 9: UnifCrown
Input: Parameters 0 < R− < R+.
Output: A point (x, y) with uniform distribution in A(R−, R+)

uρ, uθ ← U(0, 1);
ρ←

√
R2

− + uρ(R2
+ −R2

−);
x← ρ · cos( π

2 uθ);
y ← ρ · sin( π

2 uθ);
return (x, y)

Specifications of N-Sampler: In Algorithm 5, the first step is the sampling of a continuous
Gaussian perturbation with some elliptic covariance E. If Σ is a matrix such that ΣtΣ = E, then
NE = Σ · N1. As mentioned previously, in FFT domain the target covariance matrix is diagonal
with positive entries: we have Σ =

√
E, where the square root is taken entry-wise on the diagonal.
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Hence this step of PeikertSampler boils down to the well-known sampling of a normal variate. We
carry out this step by Box-Müller’s approach, which we recall below for cross-referencing purposes.

Algorithm 10: N-Sampler
Input: The degree d of R.
Output: Two variables x, y with distribution Nd

uρ, uθ ← U(0, 1);
ρ←

√
−2d ln uρ;

x← ρ · cos(2πuθ);
y ← ρ · sin(2πuθ);
return (x, y)

Specifications of Compress and Decompress: We reuse the same method as in Falconto encode
and decode a Gaussian vector. For completeness, we describe compression and decompression
functions in Algorithm 11 and Algorithm 12 respectively. Note that slen = 8 · |sgn| − 320 by default
where |sgn| denotes the signature size in bytes. Again, we can use improved encoding technique
suggested in [ETWY22] to further reduce the signature size and this will be implemented in future
version of SOLMAE.

Algorithm 11: Compress
Input: A polynomial s =

∑d−1
i=0 siX

i ∈ R = Z[X]/(Xd + 1) and an integer slen.
Output: A compressed representation of str of s of bitsize slen, or ⊥

str ← {};
for i = 0 to d− 1 do

str ← (str || b) where b = 1 if si < 0, b = 0 otherwise;
str ← (str || b6b5 · · · b0) where bj = (|si| ≫ j)&0x1;
k ← |si| ≫ 7;
str ← (str || 0k1)

end
if |str| > slen then

str ←⊥;
end
else

str ← (str || 0slen−|str|)
end
return str

3.7 List of parameters
For clarity, we sum-up all the concrete values for the parameters described in this section in Table 1.
Note that the value of smoothing η can be used 1.320 for SOLMAE−512 and SOLMAE−1024
together. In practice, it doesn’t make difference.

4 Preliminary performance analysis
4.1 Description of platform
Our implementation has been tested on various x86–64 platforms, and consistently outperforms
Falcon in signing and verification in equal dimension, while key generation is slightly slower.
Timings below have been collected on a single core of a Ryzen Threadripper Pro 5975WX @ 3.60
GHz workstation with hyperthreading and frequency scaling disabled.
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Algorithm 12: Decompress
Input: A bitstring str of bitsize slen
Output: A polynomial s =

∑d−1
i=0 siX

i ∈ R = Z[X]/(Xd + 1) or ⊥

if |str| ̸= slen then
return ⊥;

end
for i = 0 to d− 1 do

s′
i ←

∑6
j=0 26−jstr[1 + j];

k ← 0;
while str[8 + k] = 0 do

k ← k + 1
end
si ← (−1)str[0] · (s′

i + 27k);
if si = 0 and str[0] = 1 then

return ⊥
end
str ← str[9 + k : ]

end
if |str| ̸= 0|str| then

return ⊥;
end
return s =

∑d−1
i=0 siX

i

Table 1: List of parameters for SOLMAE

SOLMAE–512 SOLMAE–1024

ring degree d 512 1024

dimension 2d 1024 2048

modulus q 12289 12289

salt length k 320 320

smoothing η 1.338 1.351

smoothness ϵ 2−41 2−41

quality α 1.17 1.64

correction δ 0.065 0.3

lower radius R− 101.95 100.85

upper radius R+ 122.49 148.54

signature width σsig 173.54 245.62

slack τ 1.04 1.04

rejection bound γ2 33870790 134150669
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4.2 Performance of our reference implementation

Our current implementation displays the performance below. Falcon performance numbers are
also provided using the speed tool included in the official code archive; the tool does not include
cycle counts, so they are omitted in Table 2.

Observe that our new KeyGen is fairly close to Falcon’s in terms of speed, and as mentioned in
Section 3, this is obtained while increasing the security level of SOLMAE compared to that of
Mitaka. For signing, SOLMAE consistently outperforms Falcon by a factor of about 2, and for
verification, SOLMAE is also about 50% faster.

Table 2: Performance comparison between SOLMAE and Falcon.

SOLMAE–512 SOLMAE–1024 Falcon–512 Falcon–1024

KeyGen time
Mcycles 27 65 — —

time (ms) 7.5 18 5.0 15

pk size Bytes 896 1792 896 1792

Sign time
kcycles 387 775 — —

time (µs) 108 216 220 441

sgn size Bytes 666 1375 666 1280

Verif time
kcycles 40 84 — —

time (µs) 11 23 18 36

Under the low-speed computing environment, Intel(R) Core(TM) i7-8550U CPU@1.80GHz
8.00GB RAM, we have executed the performance check of our reference implementation without
compression/decompression for SOLMAE–512 and SOLMAE–1024 whose C-src codes are attached
in our submission package to KpqC competition.

For this test, the input messages are chosen 1,024 byte randomly per 10,000 times with each
count using different key pairs. The average clock cycle and time (µs) during KeyGen, Sign and
Verif using SOLMAE–512 and SOLMAE–1024 are shown in Table 3.

5 Security

5.1 Model for lattice reduction

In all of the following, we follow the so-called Geometric series assumption (GSA), asserting that a
reduced basis sees its Gram-Schmidt vectors’ norm decrease with geometric decay. More formally,
it can be instantiated as follows for self-dual BKZ (DBKZ) reduction algorithm of Micciancio and

Table 3: Average performance per each step of SOLMAE–512 and SOLMAE–1024

SOLMAE–512 SOLMAE–1024

KeyGen 26,336,721.9 13,231.4 56,381,295.8 28,301.3

Sign 499,836.9 244.2 975,022.5 491.9

Verif 35,427.8 15.0 69,530.2 35.6
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Walter [MW17]: an output basis (b1, . . . , bn) yielded by DBKZ algorithm with block size β on a
lattice L of rank n satisfies

∥b∗
i ∥ = δ

d−2(i−1)
β det(L) 1

n , where δβ =
(

(πβ)
1
β · β

2πe

) 1
2(β−1)

,

for b∗
i being the i-th Gram Schmidt vector of the basis.

5.2 Key recovery attack
The key recovery consists in finding the private secret key (i.e. f, g ∈ R2) from the sole data of
the public elements q and h. The most powerful attacks are up-to-our-knowledge realized through
lattice reduction. It consists in constructing the algebraic lattice over R spanned by the vectors
(q, 0) and (h, 1) (i.e. the public basis of the NTRU key) and retrieve the lattice vector s = (g, f)
among all possible lattice vectors of norm bounded by ∥s∥ =

√
2dσ (or a functionally equivalent

vector, for instance (µg, µf) for any unit µ of the number field).
We make use of the so-called projection trick to avoid enumerating over all the sphere of radius

√
2dσ (which contains around

(
2dσ2

q

)d

vectors under the Gaussian heuristic). More precisely we
proceed as follows. Set β to be the block size parameter of the DBKZ algorithm and start by reducing
the public basis with this latter algorithm. Call [b1, . . . , b2d] the resulting vectors. Then if we can
recover the projection of the secret key onto P, the orthogonal space to Span(b1, . . . , b2d−β−1),
then we can retrieve in polynomial time the full key by Babai nearest plane algorithm to lift it to a
lattice vector of the desired norm. Hence it suffices to be able find the projection of the secret key
among the shortest vector of the lattice generated by the last β vectors projected onto P . Classically,
sieving on this projected lattice will recover all vectors of norm smaller than

√
4
3 ℓ, where ℓ is the

norm of the 2d− β-th Gram-Schmidt vector b∗
2d−β of the reduced basis. Under the GSA, we have:

ℓ = √qδ−2d+2β+2
β ≈

(
β

2πe

)1− d
β

.

Moreover, considering that s behaves as a random vector of norm
√

2dσ, and using the GSA to
bound the norm of the Gram-Schmidt vectors [b∗

1, . . . , b∗
2d−β ], that the norm of its projection over

P is roughly √
β

2d
∥s∥ = β

1
2 σ.

Hence, we will retrieve the projection among the sieved vectors if β
1
2 σ ≤

√
4
3 ℓ, that is if the following

condition is fulfilled:
σ2 ≤ 4q

3β
δ

4(β+1−d)
β (2)

5.3 Signature forgery by reduction to Approx-CVP.
As a Hash-and-Sign paradigm signature, forging a signature stems to feeding a lattice point v at a
bounded distance from a random space point x. This Approx-CVP problem can be solved using the
so-called Nearest-Cospace framework developed in [EK20]. Under the Geometric Series assumption,
Theorem 3.3 of [EK20] states that under the condition: ∥x− v∥ ≤

(
δ2d

β q
1
2

)
, the decoding can be

done in time Poly(d) calls to a CVP oracle in dimension β.
As mentioned in [CPS+20] a standard optimization of this attack consists only considering the

lattice spanned by a subset of the vectors of the public basis and perform the decoding within this
sublattice. The only interesting subset seems to consists in forgetting the k ≤ n first vectors. The
dimension is of course reduced by k, at the cost of working with a lattice with covolume q

k
2(2d−k)

bigger. Henceforth the global condition of decoding becomes the (slightly more general) inequality
∥x− v∥ ≤ mink≤d

(
δ2d−k

β q
d

2d−k

)
As such, we need to enforce the condtion:

γ ≥ min
k≤d

(
δ2d−k

β q
d

2d−k

)
(3)
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5.4 On the other attacks on SOLMAE

In this section, we list the other possible type of attacks on the signature, which are nonetheless
irrelevant for the set of parameters we are using.

Algebraic attacks As remarked in the design of NTRU-based schemes (such as for instance
Falcon or ModFalcon signatures), there exists a rich algebraic structure in the modules over the
convolution ring R used in Solmae. However, there is no known way to improve all the algorithms
previously mentioned with respect to their general lattice equivalent by more than polynomial
factors (see for instance the speedup on lattice reduction of [KEF20]).

Overstretched NTRU-type As observed in [KF17], when the modulus q is significantly larger than
the magnitudes of the NTRU secret key coefficients, the attack on the key based on lattice reduction
recovers the secret key better than the results presented above. This so-called “overstretched NTRU”
parameters occurs when q > (2d)2.83 for binary secrets, implying that, as it is the case for Falcon
and other NTRU based NIST candidates, that even very significant improvements of this attack
would still be irrelevant for the security of the scheme.

Hybrid attacks Odlyzko’s meet on the middle attack, or more recently the hybrid attack of
Howgrave-Graham [How07] which combines a meet-in-the-middle algorithm with a key recovery
by lattice reduction were used effectively against NTRU, mainly due to its design using sparse
polynomials. As it is not the case (secrets are dense elements in the ring R), their impact is not
sufficient to be a problem on the parameter selection of SOLMAE.

5.5 Concrete security

In order to assess the concrete security of our signature scheme, we proceed using the usual
cryptanalytic methodology of estimating the complexity of the best attacks against key recovery
attacks on the one hand, and signature forgery on the other.

The analyses translate into concrete bit-security estimates following the methodology of
NewHope [ADPS16], sometimes called “core-SVP methodology”. In this model [BDGL16, Laa16],
the bit complexity of lattice sieving (which is asymptotically the best SVP oracle) is taken as
⌊0.292β⌋ in the classical setting and ⌊0.265β⌋ in the quantum setting in dimension β.

The resulting security in terms of the sampling quality α is given in Fig. 4 in dimensions 512
and 1024.
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Fig. 4: Security (classical and quantum) against forgery as a function of the quality 1 ≤ α ≤ 3 of
the lattice sampler (left: dimension 512 and right: dimension 1024).
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Table 4: Security level for SOLMAE
(C is classical security, Q is quantum security.)

SOLMAE−512 SOLMAE−1024

bit security (C/Q) 127/115 256/232

NIST equivalent NIST-I NIST-V

5.6 Side-Channel Resilience

As is the case with Falcon, the difficulty of realizing constant-time implementation lies in the use of
floating-point arithmetic. A potential approach to address the problem would be to rely on the work
of Pornin [Por19], which has successfully presented constant-time implementation of floating-point
arithmetic by either benefiting from dedicated floating-point hardware when available, or otherwise
by emulating floating-point with only integer operations. At the core of PeikertSampler is Gaussian
sampling over the integers (Z-Sampler). We recommend implementing this step by following the
isochronous sampler of Howe et al. [HPRR20] Their version of Z-Sampler essentially invokes a
base Gaussian sampler that samples an element with the fixed half Gaussian distribution (which
can be made constant-time by naively going through all entries in the CDT) and then rejects that
element with certain probability in such a way that the rejection rate leaks no information about
the secret. We defer the details to Section 4 of [HPRR20].

6 Summary or Conclusion

This document summarizes the SOLMAE signature scheme submitted to the Korean Post-Quantum
Comptetition. SOLMAE is a lattice-based signature scheme following the hash-and-sign paradigm
(in the style of Gentry–Peikert–Vaikuntanathan signatures), and instantiated over ntru lattices.
In that sense, it is closely related to, and a successor of, several earlier schemes including Ducas–
Lyubashevsky–Prest (DLP), Falcon and Mitaka. More precisely, SOLMAE offers the “best of
both worlds” between Falcon and Mitaka.

Falcon has the advantage of providing short public keys and signatures (offering essentially
the best bandwidth trade-off among post-quantum constructions) as well as high security levels;
however, it is plagued by a contrived signing algorithm that makes it very difficult to implement
correctly, not very fast for signing and hard to parallelize; it also has very little flexibility in terms
of parameter settings. In contrast, Mitaka is much simpler to implement, twice as fast in equal
dimension, straightforward to parallelize and fully versatile in terms of parameters; however, it
has lower security than Falcon in equal dimension, has an even more contrived key generation
algorithm that tends to be quite slow, and has somewhat larger keys and signatures at equivalent
security levels.

We can conclude that SOLMAE solves the conundrum of choosing between those two schemes
by offering all the advantages of both. It uses the same simple, fast, parallelizable signing algorithm
as Mitaka, with flexible parameters. However, by leveraging a novel key generation algorithm
that is much faster and achieves higher security, SOLMAE achieves the same high security and
short key and signature sizes as Falcon. It is also compatible with recently introduced ellipsoidal
lattice Gaussian sampling techniques to further reduce signature sizes. This makes SOLMAE the
state-of-the-art in terms of constructing efficient lattice-based signatures over structured lattices.

Some challenges are left to do next:

– Implementation of intermediate NIST security level from II to IV
– Implementation of compression and decompression to reduce the size of signature
– Optimized Implementation on various platform
– Backup documents to understand the underlying theory of SOLMAE, etc.
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