
SOLMAE: Faster and Simpler Quantum-safe Signature based
on NTRU-lattices

Kwangjo Kim1, Mehdi Tibouchi2, Alexandre Wallet3,
Thomas Espitau4, Yang Yu5, and YeonJun Kim6

1 International Research Institute for Cyber Security(IRCS)/KAIST, Korea
kkj@kaist.ac.kr

2 NTT Social Informatics Laboratories, Japan
mehdi.tibouchi@normalesup.org

3 Inria, France
alexandre.wallet@inria.fr

4 PQShield SAS, France
t.espitau@gmail.com

5 Tsinghua University, China
yang.yu0986@gmail.com

6 LGUPLUS, Korea
cherryk@lguplus.co.kr

April 7, 2024

Abstract. This paper introduces the SOLMAE which is faster and simpler quantum-safe
signature following the traditionally hash-and-sign paradigm in the style of Gentry–Peikert–
Vaikuntanathan signatures, and instantiates it over ntru lattices. In that sense, it is closely
related to, and a successor of, several earlier schemes including Ducas–Lyubashevsky–Prest
(DLP), Falcon, Mitaka and ANTRAG. More precisely, SOLMAE offers the “best of three
worlds” between Falcon, Mitaka and ANTRAG.
Falcon is known to have the advantage of providing short public keys and signatures
(essentially offering the best bandwidth trade-off among post quantum constructions) as well
as high security levels; however, it is plagued by a contrived signing algorithm that makes
it very difficult to implement correctly, not very fast for signing and hard to parallelize; it
also has very little flexibility in terms of parameter settings. In contrast, Mitaka is much
simpler to implement, twice as fast in equal dimension, straightforward to parallelize and
fully versatile in terms of parameters; however, it has lower security than Falcon in equal
dimension, has an even more contrived key generation algorithm that tends to be quite slow,
and has somewhat larger keys and signatures at equivalent security levels.
SOLMAE solves the conundrum of choosing between those two schemes by offering all the
advantages of both by leveraging ANTRAG. It uses the same simple, fast, parallelizable
signing algorithm as Mitaka, with flexible parameters. However, by leveraging a novel key
generation algorithm that is much faster and achieves higher security, SOLMAE achieves
the same high security and short key and signature sizes as Falcon and a faster Sign
procedure. This approach is also compatible with recently introduced ellipsoidal lattice
Gaussian sampling techniques to further reduce signature sizes. This makes SOLMAE the
state of the art in terms of constructing efficient lattice-based signatures over structured
lattices. Further implementation challenges are left to the conclusion.

Keywords: Falcon · Signature schemes · Lattice-based cryptography · Hash-and-sign
paradigm · Module lattices · Lattice Gaussian sampling

1 Introduction

Designing cryptographically strong primitives such as digital signatures or key encapsulation
mechanisms, etc. is really a major challenge and cannot be accomplished in a short time by one
expert. A group of smart designers must understand all the known attacks so far from the theoretical
and implementation points of view and anticipate feasible attacks in the near future. Our team,

consisting of top–level cryptographers around the world, has started to suggest long–term quantum–
secure digital signature against quantum attacks based on NTRU lattices, which are well-scrutinized
by the cryptographic community since their introduction approximately two decades ago.

Falcon [PFH+22] was selected as one of the final quantum-safe digital signature algorithms for
almost six years long NIST PQC standardization project from 2017 based on the NTRU trapdoor
together with Dilithium and SPHINCS+ in 2023; this algorithm was designed by leveraging
FFO(Fast Fourier Orthogonalization)[DP16] but it is slow and complicated to implement.

At its core, Falcon is a hash-then-sign signature paradigm proposed by Gentry, Peikert and
Vaikuntanathan [GPV08] based on the lattice problem. To be efficiently instantiated, this framework
needs a class of lattices with efficiently computational trapdoor bases for the signing procedure.
Ducas, Lyubashevsky and Prest [DLP14] showed that ntru lattices are a nice class of lattices. Thus,
short Gaussian vectors are sampled in a public ntru lattice; a quasi-linear (time and memory)
but complex procedure called Fast Fourier Sampling was described by Ducas and Prest [DP16].
Falcon achieves the most compact signatures, and the most compact verification key and signatures
combined sizes, and boasts verification times on par with elliptic curve signatures.

Inspired by Falcon’s design. Espitau et al. presented so–called Mitaka[EFG+22] to reduce
some drawbacks of Falcon. At a high–level, it removes the inherent technicality of the sampling
procedure, and most of its induced complexity from an implementation standpoint, for free, that
is with no loss of efficiency. The simplicity of our design translates into faster operations while
preserving signature and verification key sizes, in addition to allowing for additional features absent
from Falcon, such as enjoying less expensive masking, and being parallelizable. In 2023, Espitau et
al. [ENS+23] suggested so–called ANTRAG in order to improve Mitaka without loss of security
covering all NIST 5 levels of security using the degree of cyclotomic ring from 512 to 1024 over
specific cyclotomic polynomials under the prime modulus but is not limited to the power of 2.

Taking all advantages of Falcon, Mitaka and ANTRAG, SOLMAE ¶ is yet another quantum–
safe signature based on NTRU trapdoor and achieves better performance for the same security
and advantages as Falcon which focused only on NIST I and V levels of security. More precisely,
SOLMAE offers the “best of three worlds” between Falcon, Mitaka and ANTRAG.

1.1 Design rationale

Overall, SOLMAE is summarized in Fig.1.

Hybrid Sampler [Pre15]

Optimal NTRU Trapdoors

MITAKA [EFG+22] & ANTRAG [ENS+23]

SOLMAE

Fig. 1: Overview of SOLMAE

More details about all the objects mentioned in this section can be found later. Here, we focus
on the big lines behind our scheme’s principles, keeping details at a minimum. While its predecessor
Falcon could be summed up as “an efficient instantiation of the GPV framework”, SOLMAE
takes it one step further. The ingredients behind the boxes in Figure 1 are as follows:
¶ It is an abbreviation of quantum–Secure algOrithm for Long-term Message Authentication and

Encryption.

2

– An optimally tuned key generation algorithm, enhancing the security of our new sampler
to that of Falcon’s level∥;

– The hybrid sampler is a faster, simpler, parallelizable and maskable Gaussian sampler to
generate signatures;

– Easy implementation by assembling all the advantages of Mitaka and ANTRAG to make
faster and simpler for practical purposes.

On the other hand, other techniques require tweaking the key generation and signing procedures.
The rest of the section provides more in–depth information about the history behind these

improvements, and the reasons for their existence. For a more concrete description of the objects,
the readers can refer to Section 3.

A quick overview of hash-then-sign over lattices Almost all hard cryptographic problems
from lattices involve either computing short vectors or decoding a target to a close lattice point,
from an arbitrarily bad description of the lattice. Hash-then-sign over lattices is no exception, as it
can be described as follows:

– a message M is hashed as a vector m = H(M) in the ambient space of a public lattice L;
– After computing a point v ∈ L quite close to H(M), a signature is s = H(M)− v;
– a pair (M, s) is valid if H(M)− s belongs to L and s is short enough.

On the one hand, only the signer should be able to efficiently compute v close enough to an arbitrary
target. This decoding problem can be solved when the basis of short vectors is known. On the
other hand, anyone wanting to check the validity of a signature should be able to verify lattice
membership. The scheme therefore relies on two main ingredients:

1. the ability to generate pairs (A, B) of bases for a given lattice L, where B remains secret and
is composed of short vectors;

2. an efficient procedure exploiting B to compute signatures.

It is common to call secret basis B a trapdoor, and in this documentation we call (A, B) a trapdoor
pair.

The lessons learned from the first instantiation NtruSign [HHP+03] was the first hash-then-
sign signature scheme relying on lattice problems, and historically the second use of the so-called
ntru lattices [HPS98]. For small polynomials f, g ∈ Z[X]/(Xn − 1), that is, with coefficients of
small magnitude, let h = g/f mod q. One can represent h by its matrix of multiplication [h] and
the ntru lattice is then

Lntru := {(u, v) ∈ Z2d : [h]u− v = 0 mod q}.

To check lattice membership, it is enough to know h and q. In particular, by their definition, all
vectors (xif, xig) are short, and in the lattice. The authors of [HHP+03] gave an algorithm to
complete them into a full basis of Lntru (see also Section 3.2). To sign a message, the idea was to rely
on Babai’s round-off algorithm: take the coordinate of a message in basis B, and round them to their
nearest integers to obtain a close-by lattice point. While signing was efficient, it was soon realized
that this approach was flawed beyond repair: each signature was leaking information about B. After
enough observations, an attacker could use statistical learning to recover B itself [NR06, DN12].
The scheme was thus abandoned.

The Gentry-Peikert-Vaikuntanathan paradigm For the purpose of this section, we will only
focus on the necessary ingredients of the GPV framework [GPV08]. More details can be found in
Section 3. The key observation is that one can obtain a nonleaking signature algorithm by replacing
the round-off by lattice Gaussian sampling. Such a procedure would output random vectors in Lntru
with a Gaussian-like distribution independent of the lattice basis, thwarting statistical attacks to
∥ This corresponds to the NIST-I and NIST-V requirements.

3

recover B. The authors of [GPV08] also recalled Klein’s algorithm to sample lattice Gaussians
in quadratic time, but the practical efficiency of the whole design was not addressed. This result
was undeniably an enormous step forward for hash-then-sign over lattices: however, trapdoors
were now not only asked to be made of short vectors: they would also need their Gram-Schmidt
orthogonalization to be made of vectors as short as possible. This was indeed necessary to ensure
that Klein’s algorithm would output Gaussians with small variance; without such a property, it
would be easier for an adversary to forge valid signatures.

NTRU strikes again: the trapdoors of Ducas, Lyubashevsky and Prest In [DLP14], in
which ntru-like lattices were again the center of attention. By switching from Z[X]/(Xn − 1) to a
ring of cyclotomic integers R = Z[X]/(X2n + 1), the authors observed that the algebraic structure
underlying these lattices provided strong and useful geometric constraints. Generally, the largest
Gram-Schmidt vectors of an ntru lattice would correspond to (f, g) and a completion (F, G) of
the secret basis. It is hopeless to expect any (f, g) to lead to a trapdoor basis useful for signing,
but one could hope to find a good pair reasonably quickly by some kind of random walk among the
set of potential keys. Indeed, backed by extensive experimental confirmations, the authors proposed
a carefully tuned key generation algorithm relying on Gaussian cyclotomic integers, and while their
focus was more advanced cryptographic functionality, this algorithm was arguably the birthstone of
Falcon.

Sampling: the interplay between trapdoor quality and security level Klein’s algorithm
actually suffers from its quadratic complexity in practice. Because of the algorithm’s design,
parallelization is also unfriendly. Ducas and Prest soon realized that these limitations could be
avoided thanks to the algebraic structure of the underlying cyclotomic ring Z[X]/(X2n + 1). They
described a recursive quasi-linear approach [DP16] to Klein’s algorithm exploiting the tower
structure of the ring, in the spirit of the Fast Fourier Transform algorithm — which gave its name
to their new sampler. At the price of an intricate implementation, the resulting Gaussian sampler
achieves impressive performance, close to the signing time of the other NIST winning signature,
Dilithium.

A natural question is whether such complications can be avoided. There are, after all, other
approaches to lattice Gaussian sampling such as Peikert’s “randomized Round-off” [Pei10] and
Ducas-Prest’s Hybrid sampler. Both methods are simpler than the Fast Fourier Sampler and are
even more efficient, but the limitations of these algorithms are related to the metric driving their
quality, that is, the variance they can achieve — recall that the smaller the variance is, the better
the security is. Each sampling algorithm relies on a different metric tied to its geometric design; in
other words, the notion of a“good trapdoor” differs from one sampling algorithm to another. It
was already identified by Prest [Pre15] that Klein’s approach would always be the better choice
for security, with the hybrid being a not-so-close second and Peikert’s arriving even further. More
precisely, Prest’s experiments suggested that finding useful trapdoors for these two other approaches
was quite less likely to occur; in other words, the sparsity of good trapdoors made them expensive
to find. From these observations, Falcon’s team made the understandable choice of better security
in general. This choice unfortunately sacrifices not only simplicity, but also side-channel resilience.

SOLMAE takes off SOLMAE’s design relies on the much simpler Hybrid sampler [Pre15], which
can fully exploit the algebraic structure underlying ntru lattices. As stated above, the simple
reuse of Falcon’s key-generation algorithm is insufficient. In [EFG+22], a refined key generation
algorithm put the hybrid sampler back into light, allowing it to find better trapdoors in a timely
manner comparable to that of Falcon, while maintaining mild security losses. We can, in fact, go a
step further: we designed a new, tailored key-generation algorithm, allowing us not only to compute
hybrid sampler trapdoors more efficiently, but also to drastically improve over their quality from
[EFG+22]. These ingredients are then assembled together with new advances in the cryptanalysis
of the underlying algorithmic problems [ETWY22] to optimize parameter sets and minimize the
bandwidth consumption.

4

1.2 Advantages and limitations

SOLMAE has the following advantages.

– Compactness: The signature size, or the combined verification key plus signature size, is
comparable to that of Falcon’s, which was the lightest in bandwith consumption among the
winning signatures in NIST’s competition. They can be further reduced by the addition of the
compression techniques of [ETWY22].

– Simplicity and efficiency: The hybrid sampler is tailored to exploit the algebraic structures
of NTRU lattices, involves only straightforward, elementary operations between polynomials,
and is practically more efficient than the FFO sampler.

– Side-channel resilience: The SOLMAE can be masked with standard and well-understood
counter-measures at a lower overhead than that of Falcon.

On the other hand, our scheme has several drawbacks:

– Reliance on floating point arithmetic: Similar to its ancestor Falcon, our scheme
relies importantly on the Fourier representation of polynomials, that is, representing them
by evaluation at complex roots of unity, prompting the use of the floating points arithmetic.
However we can reduce the floating point arithmetic in key generation procedures borrowed
from the idea of Thomas [Por23].

– Algebraically structured security assumptions: ntru lattices enjoys strong symmetries
stemming from their algebraic structure, meaning that the underlying hardness assumption
corresponds to a subclass of problems potentially easier than for plain, regular lattices. We
stress that to the best of our knowledge, no significant improvement on the cryptanalysis or
asymptotic complexity is known for these problems (which is not a guarantee that none will
ever be found).

– No formal security proof: Signature schemes in the GPV framework [GPV08] were proven
resistant against forgery (sEF-CMA in qROM [BDF+11]) in a regime of parameters that differs
noticeably from those of SOLMAE’s (or Falcon, for that matter). Even if one relies on
“the NTRU assumption” (allowing to consider that the public key is uniformly random), the
parameters of the scheme do not follow the regime of the formal proof. This is a common
discrepancy between concrete instantiations and theoretical schemes.

1.3 Errata and their correction

Table 1 summarizes the errors and typos of SOLMAEv1 [KTE+23], and their correction in
SOLMAEv2 was modified here.

Table 1: Errata in SOLMAEv1 and their correction in SOLMAEv2
No Location in SOLMAEv1 SOLMAEv1 SOLMAEv2
1 line 5 from bottom, p7 1√

d
(Rφ1(x), Iφ1(x)...

√
2
d

(Rφ1(x), Iφ1(x)...
2 line 13 and 16 in Algorithm 1, p10 σsig σ2

sig

3 line 13 in Algorithm 2, p11 α2/q q/α2

4 line 13 in Algorithm 2, p11 (2 places) φ(g) φi(g)
5 line 10 in Algorithm 3, p12 ∥(ŝ1, ŝ2)∥ ∥(F F T −1(ŝ1), F F T −1(ŝ2))∥
6 line 7 in Algorithm 4, p13 σsig σ2

sig

7 line 8 from bottom in Def. of Σi, p13 σsig σ2
sig

8 line 2, p14 σsig σ2
sig

9 line 3 in Algorithm 9, p15 ux, uy uθ

10 line 5 in Algorithm 9, p15 x← ρ · cos(2πux) x← ρ · cos(π
2 uθ)

11 line 6 in Algorithm 9, p15 y ← ρ · sin(2πuy) y ← ρ · sin(π
2 uθ)

12 line 2 in Algorithm 10, p16 Nd Nd/2

13 line 4 in Algorithm 10, p16 ρ←
√
−2d ln uρ ρ←

√
−d ln uρ

14 unit of sgn size in Table 2, p18 kBytes Bytes

5

2 Preliminaries
Vectors are in bold lower case, and considered to be in column. Matrices are in bold upper case.
When we say that a matrix is a basis of a space, we mean that the column vectors of the matrix
are the basis. The ℓ2-norm of a vector x = (x1, . . . , xd) is ∥x∥ = (

∑
i |xi|2)1/2 and its ℓ∞-norm is

∥x∥∞ = maxi |xi|.

Lattices A lattice is a discrete subgroup of Rn. Equivalently, it is the set of integer linear
combinations obtained from a basis B of Rn. The volume of a lattice is det B for any of its basis.

Cyclotomic powers-of-two rings For d = 2n, we let K = Q[X]/(Xd + 1) be the d-th cyclotomic
field. We often work in the subring R = Z[X]/(Xd + 1), and sometimes in the overring KR =
R[X]/(Xd + 1). Let ζj = exp(i(2j − 1)π/d) for 1 ≤ j ≤ d be the d-th primitive root of 1, and
for all f ∈ KR, let φi(f) = f(ζi). A polynomial in KR can be represented in several ways. The
first is the so-called coefficient embedding f =

∑
fiX

i 7→ f = (f0, . . . , fd−1). Another is the
canonical embedding f 7→ φ(f) = (φ1(f), . . . , φd(f)). The map φ is also known as the Discrete
Fourier Transform (DFT) and in particular, φ maps the polynomial multiplication in KR to a
coordinate-wise multiplication. The set of f ’s such that all φi(f) ∈ R∗

+ is denoted by K++
R . We

have ∥φ(f)∥ =
√

d∥f∥. We let f∗ be the complex conjugate of f and

f∗ = f0 − fd−1X − . . .− f1Xd−1, φ(f∗) = (φi(f))i.

The third representation of cyclotomic elements is by matrices of multiplication:

f 7→ [f] :=

f0 −fd−1 . . . −f1
f1 f0 . . . −f2
...

. . .
...

fd−1 fd−2 . . . f0

 .

We have [f∗] = [f]t.
In algorithms, we write (fi)i ∈ Rd or f ∈ KR: the former highlights that the vector of
coefficient is considered, while the latter implies that the Fourier representation is
used.

Algebraic Gram-Schmidt For (f, g), (F, G) ∈ K2×2
R , we define ⟨(f, g), (F, G)⟩K = f∗F + g∗G.

The Gram-Schmidt orthogonalization of (F, G) ∈ K2
R with respect to (f, g) is

(F̃ , G̃) = (F, G)− ⟨(f, g), (F, G)⟩K
⟨(f, g), (f, g)⟩K

· (f, g),

and one checks that ⟨(f, g), (F̃ , G̃)⟩K = 0.

NTRU lattices Let q be an integer, and f ∈ R such that f is invertible modulo q (equivalently,
det[f] is coprime to q). Let h = g/f mod q and consider the ntru module associated with h:

Mntru = {(u, v) ∈ R2 : hu− v = 0 mod q},

and its lattice version
Lntru = {(u, v) ∈ Z2d : [h]u− v = 0 mod q}.

This lattice has a volume qd. Over R, it is generated by (f, g) and any (F, G) such that fG−gF = q.
For such a pair (f, g), (F, G), this means that Lntru has a basis of the form

Bf,g =
[
[f] [F]
[g] [G]

]
.

One checks that ([h],−Idd) ·Bf,g = 0 mod q, so the verification key is h. More details are given
in Section 3.2. The ntru-search problem is as follows: given h = g/f mod q, find any (f ′ =
xif, g′ = xig). In its decision variant, one must distinguish h = g/f mod q from a uniformly random
h ∈ Rq := Z[X]/(q, Xd + 1) = (Z/qZ)[X]/(Xd + 1). These problems are assumed to be intractable
for large d.

6

Quality of an NTRU basis The secret basis will not be any pair, as it also needs to enable the
sampling of short Gaussian vectors in Lntru by hybrid sampling. The quality of an ntru basis Bf,g

quantifies this:

Q(f, g) = max
1≤i≤d/2

max
(
|φi(f)|2 + |φi(g)|2

q
,

q

|φi(f)|2 + |φi(g)|2

)1/2
.

Note that only half of the embeddings are needed, since the remaining ones correspond to the
complex conjugates. It is one of the main parameters driving the security of the scheme. It cannot
be lower than 1, but the closer it is to 1, the harder forgery attacks are.

Gaussian distributions The Gaussian function centered at c ∈ Rd and (positive definite)
covariance Σ is ρc,Σ(x) = exp(− 1

2 (x− c)tΣ−1(x− c)). The normal distribution Nc,Σ centered at c
and covariance Σ has density proportional to ρc,Σ . When we write x← NKR

Σ , we mean that the
corresponding d dimensional vector

√
2
d (ℜφ1(x),ℑφ1(x) . . . ,ℜφd/2(x),ℑφd/2(x)) has a distribution

NΣ , where ℜz and ℑz are the real and imaginary parts of complex z, respectively. For a lattice
L ⊂ Rd, the discrete Gaussian distribution over L with parameters c ∈ Rd and Σ is defined for all
x ∈ L as

DL,c,Σ(x) = ρc,Σ(x)
ρΣ(L − c) .

We omit the center if it is 0. When Σ is a scalar matrix s2I, we note Ns or DL,t,s.

3 Specifications

We first detail the principles of the GPV framework. This highlights the necessary ingredients for
an efficient signature scheme. The next sections are devoted to the scheme’s description, and how
we instantiate the triple KeyGen, Sign, Verif. The concrete values for the many parameters to be
introduced can be found at the end of the section in Table 2.

3.1 High-level view of the SOLMAE’s signature scheme

As in any signature scheme, we need to instantiate three algorithms KeyGen, Sign and Verif.
Moreover, the GPV framework has the following requirements:

– a class of lattices where KeyGen computes trapdoor pairs;
– Sign uses a Sample procedure to generate random vectors in these lattices, with a distribution

not leaking information about the trapdoor.

In the GPV framework, KeyGen outputs trapdoor pair (A, B) for a lattice L with AB = 0 mod q,
for a public integer q. Note that L is spanned by B. The signing-verification routine is then:

1. Sign(B, M) first uses a cryptographic hash function H to get a vector m = H(M) in the ambient
space Rm, and computes a preimage c = A−1m. Then Sample(B, c) finds a random vector
v ∈ L close to c. Thanks to the knowledge of B, the vector s = c− v is indeed short.

2. Verif(A, M, s, γ) computes m = H(M), then c′ = As mod q. If s is a valid signature, it can be
written as s = c− v, and then c′ = Ac = m mod q because v ∈ L, so Verif first checks this
property. But a valid signature is also short, so Verif additionally checks that ∥s∥ does not
exceed a (public, fixed) bound γ. When these two checks are satisfied, the signature is accepted.
Otherwise it is rejected.

Of course, the resulting scheme must be efficient in practice: consume the least possible bandwidth
while ensuring practically fast signing and verification timings. This implies that:

– KeyGen should give compact trapdoor pairs (that is, small bit representation);
– Sample is fast, and outputs short vectors; the shortness of the output depends on the quality of

the trapdoor.

7

– Sign outputs the smallest (in bitsize) possible signature from these random vectors.
Lastly, note that intuitively, the shorter the output of Sample is, the more difficult it is for an
attacker to forge a valid signature, so that only with the knowledge of a very good trapdoor pair
should signatures be short vectors. Technicalities start when one realizes that the notion of good
trapdoor highly depends on how Sample is instantiated. Optimizing this aspect is the main guiding
principle of our design, and in GPV’s instantiation in general.

3.2 Design of KeyGen
For the class of ntru lattices, a trapdoor pair is (h, Bf,g), and Prest & Pornin showed that a
completion (F, G) can be computed in O(d log d) time from (f, g). In practice their implementation
is as efficient as can be for this technical procedure: it is called NtruSolve in Falcon. Their
algorithm only depends on the underlying ring and now has a stable version for Z[X]/(Xd + 1),
where d = 2n. We therefore reuse it in our design.

An important concern here is that not all pairs (f, g) and (F, G) provides good trapdoor pairs
for Sample. Schemes such as Falcon and Mitaka solve this technicality essentially by sieving
among all possible bases to find the ones that reach an acceptable quality for the Sample procedure.
This technique is costly, and many tricks have been used to achieve an acceptable KeyGen. We
totally bypass this sieving routine by redesigning completely how good quality bases can be found
— see the next section for details. This improves the running time of KeyGen, and also increases
the security offered by Sample. In any case, the running time of NtruSolve largely dominates the
overall time for KeyGen: this is not avoidable because the basis completion algorithm requires the
operation of large integers and relatively high-precision floating-point arithmetic.

At the end of the procedure, the secret key contains not only the secret basis, but also the
necessary data for Sign and Sample. This additional information can be represented by elements
in KR, and is computed during or at the end of NtruSolve. All-in-all, KeyGen outputs:

sk = (b1 = (f, g), b2 = (F, G), b̃2 = (F̃ , G̃), Σ1, Σ2, β1, β2),
pk = (h, q, σsig, η),

where we recall that h = g/f mod q. These parameters are described more thoroughly in Sections 3.3
and 3.4. A list of their practical value is given in Table 2. Informally, they correspond to the following:

– (f, g), (F, G) is a good basis of the lattice Lntru associated with h, with quality Q(f, g) = α,
and b̃2 is the Gram-Schmidt orthogonalization of (F, G) with respect to (f, g);

– σsig and η are the standard deviation for signature vectors and a tight upper bound on the
smoothing parameter of Zd, respectively;

– Σ1, Σ2 ∈ KR represent covariance matrices for two intermediate Gaussian samplings in Sample;
– the vectors β1 and β2 ∈ K2

R represent the orthogonal projections from K2
R onto KR · b1 and

KR · b̃2, respectively. In other words, they act as getCoordinates for vectors in K2
R. They are

used by Sample, and are precomputed for efficiency.

Specifications of KeyGen: Algorithm 1 computes the necessary data for signature sampling,
and then outputs the key pair. Note that NtruSolve could also compute the sampling data and
the public key, but for clarity, the pseudo-code gives these tasks to KeyGen. Fig. 2 sketches the key
generation procedure.

The two subroutines PairGen (Algorithm 2) and NtruSolve are described below.
1. The PairGen algorithm generates d complex numbers (xjeiθj)j≤d/2 and (yjeiθj)j≤d/2 to act as

the FFT representations of two real polynomial fR and gR in KR, respectively. The magnitudes
of these complex numbers are sampled in a planar annulus whose small and large radii are set
to match a target Q(f, g) with UnifCrown (see also Section 3.6). It then finds close elements
f, g ∈ R by rounding, unless the rounding-error is too large. When the procedure ends, it
outputs a pair (f, g) such that Q(f, g) = α, where α depends on the security level.

2. NtruSolve is exactly Prest & Pornin’s algorithm and implementation [PP19]. It takes as input
(f, g) ∈ R2 and a modulus q, and outputs (F, G) ∈ R2 such that (f, g), (F, G) is a basis of Lntru
associated with h = g/f mod q. It does so by solving the Bézout-like equation fG− gF = q in
R using recursively the tower of subfields for optimal efficiency.

8

KeyGen (Algorithm 1)

PairGen (Algorithm 2) NtruSolve [PP19] Precomputation: Σ1, Σ2, β1, β2

UnifCrown (Algorithm 9)

Fig. 2: Flowchart of KeyGen.

Algorithm 1: KeyGen
Input: A modulus q, a target quality parameter 1 < α, parameters σsig, η > 0
Output: A basis ((f, g), (F, G)) ∈ R2 of an ntru lattice Lntru with Q(f, g) = α;
// Secret basis computation:
repeat

b1 := (f, g)← PairGen(q, α, R−, R+);
until f is invertible modulo q;
b2 := (F, G)← NtruSolve(q, f, g);

// Public key data computation:
h← g/f mod q;
γ ← 1.1 · σsig ·

√
2d; /* tolerance for signature length */

// Sampling data computation, in Fourier domain:
β1 ← 1

⟨b1,b1⟩K
· b1;

Σ1 ←
√

σ2
sig

⟨b1,b1⟩K
− η2;

b̃2 := (F̃ , G̃)← b2 − ⟨β1, b2⟩ · b1;
β2 ← 1

⟨̃b2 ,̃b2⟩K

· b̃2;

Σ2 ←
√

σ2
sig

⟨̃b2 ,̃b2⟩K

− η2;

sk← (b1, b2, b̃2, Σ1, Σ2, β1, β2);
pk← (q, h, σsig, η, γ);
return sk, pk;

9

Specifications of PairGen: This algorithm is a new addition to schemes such as Mitaka. The
ntru module associated with a public key h is morally a 2-dimensional object. When (f, g) and
(F, G) are the basis for a given modulus of the lattice, q, we have

detMntru = (ff∗ + gg∗)(F̃ F̃ ∗ + G̃G̃∗) = q2 ∈ R.

Similarly, the area of a rectangle is the product of its length and width. This means that all the
information about F̃ F̃ ∗ + G̃G̃∗ is determined by (f, g) and q, which explains why only (f, g) is
needed to know the quality of the basis found by NtruSolve. Recall from Section 2 that the quality
is

α := Q(f, g) = max
1≤i≤d/2

max
(
|φi(f)|2 + |φi(g)|2

q
,

q

|φi(f)|2 + |φi(g)|2

)1/2
.

Equivalently, a basis has quality α when for all i ≤ d/2, we have

q

α2 ≤ |φi(f)|2 + |φi(g)|2 ≤ α2q. (1)

As this is determined by the evaluations of the polynomials f and g, or equivalently, by their FFT
representations, it is natural to sample these polynomials directly via their complex evaluations.
This is handled by a subroutine UnifCrown, described in Section 3.6, Algorithm 9.

A hiccup is that inverting the FFT leads a priori only to real polynomials fR and gR ∈ KR. We
thus have to round the coordinates of fR and gR to their nearest integers which incurs a small error.
We handle this error by sampling fR and gR in FFT-format in a smaller annulus (or crown) with
radii

R− =
(

1
α

+ δ

)
√

q and R+ = (α− δ)√q,

where δ is a small correction parameter to ensure that the rounding will remain in the correct crown
A(√q/α, α

√
q) with a large probability. In practice we take δ512 = 0.065 and δ1024 = 0.3, values

that are set so that ≈ 80 tries on average for d = 512, resp. ≈ 5 tries on average for d = 1024, of
the decoded polynomials (f, g) satisfy Eq.(1).

Let us explain the determination of these values. The decoding errors can be accurately modeled
as continuous 2-dimensional Gaussian vectors. This means that in average, the decoding makes an
error proportional to the standard deviation of these Gaussians, which are heuristically identically
and independently distributed. Due to the good concentration properties of Gaussians, we can
fine-tune the tolerance with standard calculations, that match experimental observations. This
leads to PairGen, where the target quality is by default α512 = 1.17 and α1024 = 1.64.

3.3 Design of Sign:

Recall that ntru lattices live in R2d. Their structure also helps to simplify the preimage computation.
Indeed, the signer only needs to compute m = H(M) ∈ Rd, as then c = (0, m) is a valid preimage:
the corresponding polynomials satisfy (h, 1) · c = m.

Another interesting feature is that only the first half of the signature (s1, s2) ∈ Lntru needs to
be sent along the message, as long as h is available to the verifier. This comes from the identity
hs1 = s2 mod q defining these lattices, as we will see in the Verif algorithm description. ∗∗

Because of their nature as Gaussian integer vectors, signatures can be encoded to reduce the size
of their bit-representation. The standard deviation of Sample is large enough so that the ⌊log√q⌋
least significant bits of one coordinate are essentially random. In Falcon, the most significant bits
(MSBs) of each coordinate are then sent through an unary (or Huffman) encoding together with
their corresponding tails, which already save a nice portion of bandwith. This generic approach is
summed-up as the Compress and Decompress functions in Section 3.6.

Following [ETWY22], we can go a step further by noticing that instead of encoding each sets of
MSB’s separately, we can batch-encode them as a whole using for example Asymmetric Numeral
∗∗ The same identity can also be used to check the validity of signatures only with a hash of the public key

h, requiring this time send both s1 and s2, but we will not consider this setting here.

10

Algorithm 2: PairGen
Input: A modulus q, a target quality parameter 1 < α, two radii parameters 0 < R− < R+
Output: A pair (f, g) with Q(f, g) = α
for i = 1 to d/2 do

xi, yi ← UnifCrown(R−, R+) ; /* see Algorithm 9 */
θx, θy ← U(0, 1);
φf,i ← |xi| · e2iπθx ;
φg,i ← |yi| · e2iπθy ;

end

(fR, gR)←
(

FFT-1((φf,i)i≤d/2), FFT-1((φg,i)i≤d/2)
)
;

(f , g)← (⌊fR
i ⌉)i≤d/2, (⌊gR

i ⌉)i≤d/2;

(φ(f), φ(g))← (FFT(f), FFT(g));
for i = 1 to d/2 do

if q/α2 > |φi(f)|2 + |φi(g)|2 or α2q < |φi(f)|2 + |φi(g)|2 then
restart;

end
end
return (f , g);

Systems (ANS). Our signatures then enjoy an additional 7− 12% compression factor. This will be
implemented in a future version of SOLMAE.

In the description above, the scheme cannot output two different signatures for a message. This
well-known concern of the GPV framework can be addressed in several ways, for example making a
stateful scheme or by hash randomization. Like Falcon, we chose the latter solution for efficiency
purposes. In practice, Sign adds a random “salt” r ∈ {0, 1}k, where k is large enough that an
unfortunate collision of messages is unlikely to occur, that is, it hashes (r||M) instead of M — our
analysis in this regard is identical to that of Falcon. A signature is then sig = (r, Compress(s1)).

Fig. 3 sketches the signing procedure.

Sign (Algorithm 3)

Sample (Algorithm 4) Compress (Algorithm 11)

PeikertSampler (Algorithm 5)

N-Sampler (Algorithm 10) Z-Sampler [PFH+20]

Fig. 3: Flowchart of Sign.

Specifications of Sign: The signing algorithm Sign handles the hash and the Fourier conversions,
leaving the important task of generating the signature vectors to Sample. The hash function is
instantiated as explained in Section 3.6. It also generates the salt r ∈ {0, 1}k; the length of the
salt is obtained by standard conversions from a conservative target bit-security and the maximum
number of queries qs = 264 as k = 320 = 256 + log qs.

The parameter η is selected as a tight upper bound on the smoothing parameter ηϵ(Zd), for some
ϵ > 0. Informally, this parameter quantifies the amount of noise to smooth out the discreteness

11

of lattice Gaussian vectors. The value of ϵ is deduced following [Pre17, EFG+22] and the current
standard Renyi divergence arguments. The corresponding value for η is then

ϵ = 2−41 and η = 1
π

√
1
2 · log

(
2d

(
1 + 1

ϵ

))
.

Concretely, we have η512 ≈ 1.338 and η1024 ≈ 1.351. The output is a Gaussian vector v ∈ Lntru
centered at c = (0, H(r||M)); the parameter σsig determines the expected distance from v to its
center, and therefore drives the hardness of the forgery. Its value is determined from [Pre15, EFG+22]:

σsig = η · Q(f, g) · √q.

Algorithm 3: Sign
Input: A message M ∈ {0, 1}∗, a tuple sk = ((f, g), (F, G), (F̃ , G̃), σsig, Σ1, Σ2, η), a

rejection parameter γ > 0.
Output: A pair (r, Compress(s1)) with r ∈ {0, 1}320 and ∥(s1, s2)∥ ≤ γ.
r ← U({0, 1}320);
c← (0, H(r||M));
ĉ← FFT(c);
repeat

(ŝ1, ŝ2)← ĉ− Sample(ĉ, sk);
// (s1, s2)← DLntru,c,σsig

until ∥(FFT-1(ŝ1), FFT-1(ŝ2))∥2 ≤ γ2;
s1 ← FFT-1(ŝ1);
s← Compress(s1);
return (r, s);

The sampling of the signature vector in Algorithm 3 is a cascade of different sampling
algorithms, Sample, PeikertSampler, and at the deepest level, Z-Sampler. Their specifications
follow.

3.4 Design of Sample:

Our second main change from Falcon is to rely on the hybrid sampler for the Sample procedure.
To make sense of this change, we provide the briefest possible outline of Lattice Gaussian sampling
— as the sampling of signature ultimately is the whole core of the entire fast-GPV design, this is
anyway a required paragraph.

Such algorithms are usually regarded as randomized decoding procedures. Babai described two
well-known lattice decoding algorithms: the round-off and the nearest-plane. Intuitively speaking,
the first just rounds coordinates of the target in the lattice basis to their nearest integer, while
the second is more fine-grained and rounds the Gram-Schmidt coordinates of the target iteratively,
correcting the deviation from the original lattice basis with each decoding step. By randomizing the
rounding using Gaussian integers, one obtains either Peikert’s sampler [Pei10] or Klein’s sampler
[Kle00, GPV08]. The former is more efficient over ntru lattices, but suffers from a lack of good
trapdoors. In other words, signatures are longer with this approach. The latter compensates for
its lack of efficiency by large sets of very good trapdoors, and therefore almost optimal signature
lengths. As we mentioned, if one accepts a delicate and practically unmaskable implementation
involving tree data structures, this drawback can be mitigated.

The hybrid sampler stands in-between, both in efficiency and signature lengths: the Gram-
Schmidt orthogonalization and randomized decoding are both done at the ring level, so that the
algorithm can be seen as a combination of Klein and Peikert’s approach. In particular, only two
decoding steps are performed for ntru lattices, compared to 2d for the FFO sampler, and the
randomization is handled by Peikert’s algorithm in the ring, which runs in quasi-linear time: this
explains its overall better efficiency. On its first analysis [Pre15], it seemed that good trapdoors for
this sampler were costlier to find. Owing to our new KeyGen algorithm, this is no longer a concern,
and we are now able to enjoy all the advantages that the hybrid sampler brings versus the FFO

12

sampler: it is simpler to implement, it is more efficient, and it is more friendly to parallelization.
Moreover, its masking can be performed with standard, well-understood techniques [EFG+22] and
online-offline approaches, since the tree structure is now entirely avoided.

Specifications of Sample: Sample is an instantiation of the hybrid sampler [Pre15, EFG+22],
and can be seen as 2-step randomized decoding, with randomization ocurring at the ring level, or
morally, in a d-dimensional space. In Algorithm 4 below, note that all operations are performed
in Fourier domain.

Algorithm 4: Sample
Input: A target c = (0, c′) ∈ K2

R, a tuple
sk = (b1 = (f, g), b2 = (F, G), b̃2 = (F̃ , G̃), σsig, Σ1, Σ2, β1, β2).

Output: A vector v ∈ Lntru with distribution statistically close to DLntru,c,σsig .
t← c, v← 0;
for i = 2 to 1 do

ti ← ⟨βi, t⟩K ;
zi ← PeikertSampler(ti, Σi, η) ; /* zi ← D

R,ti,
σ2
sig

⟨b̃i,b̃i⟩

*/

t← t− zibi, v← v + zibi;
end
return v;

The randomization is performed by a call to PeikertSampler (see Algorithm 5), which outputs
elements in R with a Gaussian distribution of suitable covariance matrices. In Fourier domain, these
covariance matrices are diagonal, and can then be represented by a vector of complex numbers.
From Section 3.2, we view σsig as a constant in KR, and the intermediate standard deviation
parameters are

Σi =

√
σ2
sig

⟨b̃i, b̃i⟩
− η2 ∈ KR.

By choice of σsig, they correspond in Fourier domain to positive definite matrices which are
actually diagonal with entries the embeddings of Σi. The square roots are then easily computed
coordinate-wise.

Specifications of PeikertSampler: Again, input, output as well as arithmetic operations are all
done in Fourier representation. The principle of PeikertSampler is perturbation-based sampling.
This translates concretely as a continuous, elliptic Gaussian sampling that is easy to handle in
Fourier domain with enough precision, combined with a spherical, discrete Gaussian sampling of
width η, as shown in Algorithm 5. The latter is handled by d calls to Z-Sampler.

Algorithm 5: PeikertSampler
Input: A target t ∈ KR, parameters Σ, η ∈ K++

R .
Output: A vector v ∈ R with distribution statistically close to DR,t,σ, where σ =

√
Σ2 + η2.

p← Σ · NKR
1 ; /* p← NKR

Σ2 , done with N-Sampler (Algorithm 10) */
(p1, . . . , pd)← FFT-1(p) ; /* (pi)i ∈ Rd */

(t1, . . . , td)← FFT-1(t) ; /* (ti)i ∈ Zd */
for i = 1 to d do

xi ←Z-Sampler(ti − pi, η);
end
return FFT(x1, . . . , xd);

13

By definition of the parameters, the calls to Algorithm 5 in Algorithm 4 output two ring
elements with respective covariance σ2

sig/⟨b̃i, b̃i⟩K , in Fourier representation.

Specifications of Z-Sampler: This step is surprisingly delicate. We reuse the ingenious method
of Falcon, and refer to their documentation [PFH+20] for the details about the parameters. Below,
we give only an informal description of the necessary steps based on [ZSS20, HPRR20].

The first concern is the necessity to sample around an arbitrary center c ∈ R. A technique is
to first identify it to its fractional part {c} ∈ [0, 1), and then use a rejection approach to allow
a sampling centered around 0 instead. This implies computations of the rejection probability,
which involve the exponential function and must be performed efficiently at a sufficiently high
floating-point precision. Next, the sampling uses a Cumulative Distribution Table (CDT) approach
(also known as an inversion-based sampler). The space is saved by using the CDT of a half Gaussian
distribution combined with a Bernoulli sampler to obtain the sign of the output.

3.5 Design of Verif:

The last step of the scheme is thankfully simpler to describe as shown in Algorithm 6. Upon
receiving a signature (r, s) and message M , the verifier decompresses s to a polynomial s1 and
c = (0, H(r||M)) to recover the full signature vector v = (s1, s2). If v is a valid signature, the
verification identity is (h,−1) · (c−v) = −H(r||M)−hs1 + s2 mod q = 0, or equivalently the verifier
can compute

s2 = H(r||M) + hs1 mod q.

This is computed in the ring Rq, and can be performed very efficiently for a good choice of modulus
q using the Number Theoretic Transform (NTT). We currently follow the standard choice (as in
Falcon) of q = 12289, as the multiplication in NTT format amounts to d integer multiplications
in Z/qZ. In future versions, we will consider different trade-offs between verification efficiency and
public-key size. The last step is to check that ∥(s1, s2)∥2 ≤ γ2: the signature is only accepted in
this case.

The rejection bound γ comes from the expected length of vectors outputted by Sample. Since
they are morally Gaussian, they concentrate around their standard deviation; a “slack” parameter
τ = 1.042 is tuned to ensure that 90% of the vectors generated by Sample will pass through the
loop:

γ = τ · σsig ·
√

2d.

Algorithm 6: Verif
Input: A signature (r, s) on M , a public key pk = h, a bound γ.
Output: Accept or reject.

s1 ← Decompress(s);
c← H(r||M);
s2 ← c + hs1 mod q;
if ∥(s1, s2)∥2 > γ2 then

return Reject.
end
return Accept.

3.6 Miscellaneous

In this section we define several supporting algorithms invoked by KeyGen, Sign, and Verif.

14

Specifications of FFT and FFT-1: Algorithms 7 and 8 show the computation of FFT and its
inverse over KR, respectively.

Algorithm 7: FFT
Input: f ∈ KR = R[X]/(Xd + 1).
Output: the FFT representation of f

ζ = exp(iπ/d);
φ(f)← (f(ζ1), f(ζ3), · · · , f(ζ2d−1));
return φ(f)

Algorithm 8: FFT-1

Input: c = (c0, · · · , cd−1) ∈ Cd such that cd−1−i = ci.
Output: f ∈ KR such that c = φ(f)

ζ = exp(iπ/d);
V =

(
ζjk
)

j∈Zd,k∈Z∗
2d

;

f ← 1
d ·Vc;

return f

Specifications of UnifCrown: Algorithm 9 below outputs a uniformly random element in a
fixed planar annulus A(R−, R+) = {(x, y) ∈ R2 : R2

− ≤ x2 + y2 ≤ R2
+}, from uniformly random

numbers in (0, 1) — that is, uniform in the set of floating point numbers with given mantissa and
exponent inside (0, 1).

Algorithm 9: UnifCrown
Input: Parameters 0 < R− < R+.
Output: A point (x, y) with uniform distribution in A(R−, R+)

uρ, uθ ← U(0, 1);
ρ←

√
R2

− + uρ(R2
+ −R2

−);
x← ρ · cos(π

2 uθ);
y ← ρ · sin(π

2 uθ);
return (x, y)

Specifications of N-Sampler: In Algorithm 5, the first step is the sampling of a continuous
Gaussian perturbation with some elliptic covariance E. If Σ is a matrix such that ΣtΣ = E, then
NE = Σ · N1. As mentioned previously, in FFT domain the target covariance matrix is diagonal
with positive entries: we have Σ =

√
E, where the square root is taken entry-wise on the diagonal.

Hence this step of PeikertSampler boils down to the well-known sampling of a normal variate. We
carry out this step by Box-Müller’s approach, which we recall below for cross-referencing purposes.

Algorithm 10: N-Sampler
Input: The degree d of R.
Output: Two variables x, y with distribution Nd/2

uρ, uθ ← U(0, 1);
ρ←

√
−d ln uρ;

x← ρ · cos(2πuθ);
y ← ρ · sin(2πuθ);
return (x, y)

15

Specifications of Compress and Decompress: We reuse the same method as in Falconto
encode and decode keys and signatures. For the sake of completeness, we describe the compression
and decompression functions as depicted in Algorithms 11 and 12, respectively. Note that
slen = 8 · |sgn| − 320 by default where |sgn| denotes the signature size in bytes. Again, we can use
the improved encoding technique suggested in [ETWY22] to further reduce the signature size which
will be implemented in a future version of SOLMAE.

Algorithm 11: Compress
Input: A polynomial s =

∑d−1
i=0 siX

i ∈ R = Z[X]/(Xd + 1) and an integer slen.
Output: A compressed representation of str of s of bitsize slen, or ⊥

str ← {};
for i = 0 to d− 1 do

str ← (str || b) where b = 1 if si < 0, b = 0 otherwise;
str ← (str || b6b5 · · · b0) where bj = (|si| ≫ j)&0x1;
k ← |si| ≫ 7;
str ← (str || 0k1)

end
if |str| > slen then

str ←⊥;
end
else

str ← (str || 0slen−|str|)
end
return str

Algorithm 12: Decompress
Input: A bitstring str of bitsize slen
Output: A polynomial s =

∑d−1
i=0 siX

i ∈ R = Z[X]/(Xd + 1) or ⊥

if |str| ̸= slen then
return ⊥;

end
for i = 0 to d− 1 do

s′
i ←

∑6
j=0 26−jstr[1 + j];

k ← 0;
while str[8 + k] = 0 do

k ← k + 1
end
si ← (−1)str[0] · (s′

i + 27k);
if si = 0 and str[0] = 1 then

return ⊥
end
str ← str[9 + k :]

end
if |str| ̸= 0|str| then

return ⊥;
end
return s =

∑d−1
i=0 siX

i

16

3.7 Domain parameters

For the sake of clarity, we summarize all the concrete values for the domain parameters as described
in Table 2. Note that smoothing η of 1.320 can be used for SOLMAE-512 and SOLMAE-1024
simultaneously for the sake of convenience. In practice, there are no any cryptographic differences.

Table 2: Domain parameters for SOLMAE family
SOLMAE-512 SOLMAE-1024

ring degree d 512 1024
dimension 2d 1024 2048
modulus q 12289 12289
salt length k 320 320
smoothing η 1.320 1.320
smoothness ϵ 2−41 2−41

quality α 1.17 1.64
correction δ 0.065 0.3
lower radius R− 101.95 100.85
upper radius R+ 122.49 148.54

signature width σsig 173.54 245.62
slack τ 1.04 1.04
rejection bound γ2 33870790 134150669

4 Security

4.1 Model for lattice reduction

In all of the following, we follow the so-called Geometric Series Assumption (GSA), asserting that
a reduced basis sees its Gram-Schmidt vectors’ norm decrease with geometric decay. More formally,
it can be instantiated as follows for the self-dual BKZ (DBKZ) reduction algorithm of Micciancio
and Walter [MW17]: an output basis (b1, . . . , bn) yielded by the DBKZ algorithm with block size
β on a lattice L of rank n satisfies

∥b∗
i ∥ = δ

d−2(i−1)
β det(L) 1

n , where δβ =
(

(πβ)
1
β · β

2πe

) 1
2(β−1)

,

for b∗
i being the i-th Gram-Schmidt vector of the basis.

4.2 Key recovery attack

The key recovery consists of finding the private secret key (i.e., f, g ∈ R2) from the sole data of
the public elements q and h. To the best of our knowledge, the most powerful attacks are realized
through lattice reduction. It consists of constructing the algebraic lattice over R spanned by the
vectors (q, 0) and (h, 1) (i.e. the public basis of the NTRU key) and retrieve the lattice vector
s = (g, f) among all possible lattice vectors of the norm bounded by ∥s∥ =

√
2dσ (or a functionally

equivalent vector, for instance (µg, µf) for any unit µ of the number field).
We make use of the so-called projection trick to avoid enumerating over all the sphere of radius

√
2dσ (which contains around

(
2dσ2

q

)d

vectors under the Gaussian heuristic). More precisely we
proceed as follows. Set β to be the block size parameter of the DBKZ algorithm and start by
reducing the public basis with this latter algorithm. Call [b1, . . . , b2d] the resulting vectors. If we
can recover the projection of the secret key onto P , the orthogonal space to Span(b1, . . . , b2d−β−1),

17

then we can retrieve the full key in polynomial time by Babai nearest plane algorithm to lift it
to a lattice vector of the desired norm. Hence it suffices to be able to find the projection of the
secret key among the shortest vector of the lattice generated by the last β vectors projected onto P .
Classically, sieving on this projected lattice will recover all vectors with a norm smaller than

√
4
3 ℓ,

where ℓ is the norm of the 2d− β-th Gram-Schmidt vector b∗
2d−β of the reduced basis. Under the

GSA, we have:

ℓ = √qδ−2d+2β+2
β ≈

(
β

2πe

)1− d
β

.

Moreover, considering that s behaves as a random vector of norm
√

2dσ, and using the GSA to
bound the norm of the Gram-Schmidt vectors [b∗

1, . . . , b∗
2d−β], that the norm of its projection over

P is roughly √
β

2d
∥s∥ = β

1
2 σ.

Hence, we will retrieve the projection among the sieved vectors if β
1
2 σ ≤

√
4
3 ℓ, that is if the following

condition is fulfilled:
σ2 ≤ 4q

3β
δ

4(β+1−d)
β (2)

4.3 Signature forgery by reduction to Approx-CVP

As a Hash-and-Sign paradigm signature, forging a signature stems to feed a lattice point v at a
bounded distance from a random space point x. This Approx-CVP problem can be solved using
the so-called Nearest-Cospace framework developed in [EK20]. Under the GSA, Theorem 3.3 of
[EK20] states that under the condition: ∥x− v∥ ≤

(
δ2d

β q
1
2

)
, decoding can be performed in time

poly(d) calls to a CVP oracle in dimension β.
As mentioned in [CPS+20] a standard optimization of this attack consists of considering

only the lattice spanned by a subset of the vectors of the public basis and decoding within this
sublattice. The only interesting subset seems to consist of forgetting the k ≤ n first vectors. The
dimension is of course reduced by k, at the cost of working with a lattice with covolume q

k
2(2d−k)

larger. Henceforth the global condition of decoding becomes the (slightly more general) inequality
∥x− v∥ ≤ mink≤d

(
δ2d−k

β q
d

2d−k

)
As such, we need to enforce the condtion:

γ ≥ min
k≤d

(
δ2d−k

β q
d

2d−k

)
(3)

4.4 On the other attacks on SOLMAE

In this section, we list the other possible types of attacks on the signature, which are nonetheless
irrelevant for the set of parameters we are using.

Algebraic attacks As remarked in the design of NTRU-based schemes (such as for instance Falcon
or ModFalcon signatures), there exists a rich algebraic structure in the modules over the convolution
ring R used in SOLMAE. However, there is no known way to improve all the algorithms previously
mentioned with respect to their general lattice equivalent by more than polynomial factors (see for
instance the speedup on lattice reduction of [KEF20]).

Overstretched NTRU-type As observed in [KF17], when the modulus q is significantly larger than
the magnitudes of the NTRU secret key coefficients, the attack on the key based on lattice reduction
recovers the secret key better than the results presented above. This so-called “overstretched NTRU”
parameter occurs when q > (2d)2.83 for binary secrets, implying that, as is the case for Falcon and
other NTRU-based NIST candidates, even very significant improvements of this attack would still
be irrelevant for the security of the scheme.

18

Hybrid attacks Odlyzko’s meet on the middle attack, or more recently the hybrid attack of
Howgrave-Graham [How07] which combines a meet-in-the-middle algorithm with a key recovery
by lattice reduction were used effectively against NTRU, mainly due to its design using sparse
polynomials. As this is not the case (secrets are dense elements in the ring R), their impact is not
sufficient to be a problem on the parameter selection of SOLMAE.

4.5 Concrete security

In order to assess the concrete security of our signature scheme, we proceed using the usual
cryptanalytic methodology of estimating the complexity of the best attacks against key recovery
attacks on the one hand, and signature forgery on the other.

The analyses translate into concrete bit-security estimates following the methodology of
NewHope [ADPS16], sometimes called the “core-SVP methodology”. In this model [BDGL16,
Laa16], the bit complexity of lattice sieving (which is asymptotically the best SVP oracle) is taken
as ⌊0.292β⌋ in the classical setting and ⌊0.265β⌋ in the quantum setting in dimension β.

The resulting security in terms of the sampling quality α is given in Fig. 4 in the dimensions
512 and 1024.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
75

80

85

90

95

100

105

110

115

120

125

130

135

Classical

antum

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
190

200

210

220

230

240

250

260

270

280

290

300

310

Classical

antum

Fig. 4: Security (classical and quantum) against forgery as a function of the quality 1 ≤ α ≤ 3 of
the lattice sampler (left: dimension 512 and right: dimension 1024).

Table 3: Security level for SOLMAE
(C is classical security, Q is quantum security.)

SOLMAE-512 SOLMAE-1024

bit security (C/Q) 127/115 256/232
NIST equivalent NIST-I NIST-V

4.6 Side-Channel Resilience

As is the case with Falcon, the difficulty of realizing constant-time implementation lies in the use of
floating-point arithmetic. A potential approach to address this problem would be to rely on the work
of Pornin [Por19], which has successfully presented constant-time implementation of floating-point
arithmetic by either benefiting from dedicated floating-point hardware when available, or otherwise
by emulating floating-point with only integer operations. At the core of PeikertSampler is Gaussian
sampling over the integers (Z-Sampler). We recommend implementing this step by following the
isochronous sampler of Howe et al. [HPRR20]. Their version of Z-Sampler essentially invokes a
base Gaussian sampler that samples an element with a fixed half Gaussian distribution (which

19

can be made constant-time by naively going through all entries in the CDT) and then rejects that
element with a certain probability in such a way that the rejection rate leaks no information about
the secret. We defer the details to Section 4 of [HPRR20].

5 Performance analysis

Kim [Kim23b] verified asymptotic complexities of Falcon and SOLMAE in KeyGen, Sign and
Verif procedures and proved that all of them take asymptotically similar Θ(d log(d)) complexity
which is difficult to evaluate the exact performances of Falcon and SOLMAE from Python
implementation.

Using the reference implementations of Falcon and SOLMAE which is and will be available
over the github in C language, respectively, we show their specific execution times on average and
make the performance comparison on the same platform.

5.1 Description of platform

The data below were collected on two cores of Intel Xeon CPU E5–2640 v3 2.60GHz, 4.00GB
of RAM on the Ubuntu–20.04 server using the CFLAGS = -Wall -Wextra -march=native -O3
compiling flag of gcc. All the tests were executed 10,000 times and the average values were taken
for the fair evaluation.

5.2 Performance comparison

For this test, the input messages are chosen to be 1,024 bytes randomly per 10,000 times with each
count using different key pairs. Falcon performance numbers are also provided using the speed
tool included in the official code archive.

First, we checked and compared the performance of the Falcon with different security level of
256(educational level), 512(NIST level I) and 1024(NIST level V) in Fig. 5. The Sign procedure
consumes more time than KeyGen and Verif procedures.

Fig. 5: Performance comparison of Falcon-{256, 512, 1024}

The average clock cycle and time (µs) during KeyGen, Sign and Verif procedures using
SOLMAE-512 and SOLMAE-1024 are shown in Table 4.

20

Table 4: Performance comparison of SOLMAE and Falcon

SOLMAE-512 SOLMAE-1024 Falcon–512 Falcon–1024

KeyGen time
Mcycles 58.77 137.76 33.65 98.65

time (ms) 22.6 52.97 12.94 37.93

pk size Bytes 896 1,792 896 1,792

Sign time
Kcycles 758.3 1,512.9 1,353.15 2,792.22

time (µs) 291.63 581.82 520.4 1,073.81

sgn size Bytes 666 1,375 666 1,280

Verif time
Kcycles 121.3 289.48 144.31 301.52

time (µs) 46.66 111.34 55.51 115.97

Table 5: Average time (µs) of common computations for Falcon and SOLMAE families

FFT poly-add pointwise-mult FFT-mul-adj poly-div-FFT discrete-Gauss Gaussian- sampling

SOLMAE-512 4.62 0.17 0.21 0.21 0.68 68.85 46.06

SOLMAE-1024 8.94 0.3 0.4 0.38 1.37 139.07 89.99

From these experiments, we found that SOLMAE without embedding compression and decom-
pression functions consistently outperforms Falcon in and Sign and Verif procedures in equal
dimension, while its KeyGen procedure is slightly slower due to its extra computation of additional
data for the private key in advance. The time to execute compression and decompression functions
can be ignored.

The average time in µs of internal common computations such as FFT, point-wise multiplication
and Gaussian sampling,etc. which are commonly used for Falcon and SOLMAE families shown
in Table 5.

On the other hand, in Table 6 we compare performance of SOLMAE-512 with Shake-128 and
that of ECDSA P256r1 with SHA256 executed by Dreamsecurity Engineer [Kim23a] using our
SOLMAE-512 C language reference implementation on their computing platform. Compared with
ECDSA, the KeyGen of SOLMAE-512 is slower than that of EDCSA P256r1 by online computation
††. However, the signing and verification of SOLMAE-512 takes about 10 times faster than those of
ECDSA P256r1 currently used in TSL or SSL. This experiment shows that SOLMAE family makes
no speed degradation when we apply quantum-secure SOLMAE for PKI and various embedded
security applications.

Table 6: Comparison of SOLMAE and ECDSA
SOLMAE ECDSA

Specification 512 P256r1

Size(Bytes) pk 1,792 65
sgn 1,375 32

Time KeyGen(ms) 30.21 2.53
Sign(µs) 288.2 2,582.8
Verif(µs) 55.6 7,744.7

†† Note that KeyGen of SOLMAE can be operated online/offline together in parallel.

21

6 Implementation

We follow the same encoding and decoding formats used in Falcon for the maximum compatibility
but some customized headers are used for keypairs and signature of SOLMAE.

6.1 Encoding Formats

Bits and Bytes We restate this part from Falcon specification to increase the readability of
this paper. As usual, a byte is a sequence of eight bits (formally, an octet). Within a byte, bits are
ordered from left to right. A byte has a numerical value, which is obtained by adding the weighted
bits; the leftmost bit, also called top bit or most significant, has a weight of 128; the next bit has a
weight of 64, and so on, until the rightmost bit, which has a weight of 1. Some of the encoding
formats defined below use sequences of bits. When a sequence of bits is represented as bytes, the
following rules apply:

– The first byte will contain the first eight bits of the sequence; the second byte will contain the
next eight bits, and so on. item Within each byte, bits are ordered left-to-right in the same
order as they appear in the source bit sequence.

– If the bit sequence length is not a multiple of 8, up to 7 extra padding bits are added at the
end of the sequence. The extra padding bits MUST have value zero.

This handling of bits matches widely deployed standards, e.g., bit ordering in the SHA-2 and
SHA-3 functions, and BIT STRING values in ASN.1.

Signatures A SOLMAE signature consists of two strings r and s. These strings may conceptually
be encoded separately, because the salt r must be known before beginning to hash the message
itself, while the s value can be obtained or verified only after the whole message has been processed.
In a format that supports streamed processing of long messages, the salt r would normally be
encoded before the message, while the s value would appear after the message bytes. However, we
here define an encoding that includes both r and s. The first byte is a header with the following
format (bits indicated from most to least significant):

1cc0nnnn

with these conventions:

– The leftmost bit is 1, and the fourth bit from the left is 0.
– Bits cc are 01 or 10 to specify the encoding method for s. Encoding 01 uses the compression

(or decompression) Algorithm 11 (or Algorithm 12); encoding 10 is alternate uncompressed
encoding in which each coefficient of s is encoded over a fixed number of bits. The encoding 00
is used for no encoding applied.

– Bits nnnn encodes the hexadecimal value of 0x02 for SOLMAE-512 and 0x0C for SOLMAE-
1024 in Table 7.

Public Keys A public key in Falcon and SOLMAE is a polynomial h whose coefficients are
considered modulo q. An encoded public key starts with a header byte:

1000nnnn

with these conventions:

– The four leftmost bits are 1000.
– Bits nnnn encode the same value as the encoding header of signature from Table 7.

Using these conventions, the header byte of encoded public key is 0x82 and 0x8C for SOLMAE-
512 and SOLMAE-1024, respectively. After the header byte comes the encoding of h: each value
(in the 0 to q−1 range) is encoded as a 14-bit sequence (since q = 12289, 14 bits per value are used).
The encoded values are concatenated into a bit sequence of 14n bits, which is then represented as
⌈14n/8⌉ bytes.

22

Private Keys Private keys use the following header byte:

1001nnnn

with these conventions:

– The four leftmost bits are 1, and the fourth bit from the left is 1.
– Bits nnnn encode the same value as the encoding header of signature and public key from

Table 7

Using these conventions, the header byte of encoded private key is 0x92 and 0x9C for SOLMAE-
512 and SOLMAE-1024, respectively.

Table 7: Coding value for SOLMAE-d-q
d q nnnn Comments

512 12289 0x02
1024 12289 0x0C

7 Concluding Remarks

This paper summarizes the important features of SOLMAE which is a lattice-based signature
scheme following the hash-and-sign paradigm (in the style of Gentry–Peikert–Vaikuntanathan
signatures), and is instantiated over ntru-lattices. In that sense, it is closely related to, and a
successor of, several earlier schemes including Ducas–Lyubashevsky–Prest (DLP), Falcon, Mitaka
and ANTRAG. More precisely, SOLMAE offers the “best of three worlds” between Falcon,
Mitaka and ANTRAG.

We can conclude that SOLMAE solves the conundrum of choosing between three schemes
by offering all their advantages. It uses the same simple, fast, parallelizable signing algorithm as
Mitaka, with flexible parameters. However, by leveraging a novel key generation algorithm that is
much faster and achieves higher security, SOLMAE achieves the same high security and short key
and signature sizes as Falcon and a faster Sign procedure. This approach is also compatible with
recently introduced ellipsoidal lattice Gaussian sampling techniques to further reduce signature sizes.
This makes SOLMAE state-of-the-art in terms of constructing efficient lattice-based signatures
over structured lattices.

At Real World Post-Quantum Cryptography 2023(PQC2023) conference held in Tokyo, Prest [Pre23]
commented in this talk that SOLMAE uses the same simple, fast, parallelizable signing alorithm as
Mitaka. By leveraging a novel key generation algorithm, SOLMAE achieves the same high security
and short key and signature size as Falcon. Moreover, based on SOLMAE specification [KTE+23],
Cottaar et el. [CHH+23] concluded that SOLMAE is close to Falcon, but easier to implement in
their evaluation report on KpqC submissions in terms of practical implementation.

Many practical reports on good–fit for Falcon were presented on V2V communications [TBRM22],
TLS certificates [SKD00], DNSSEC [MdJvH+20, GS23], low–resource verification of FPGA [BKG22]
and Cortex–M3 [GHK+21]. It is quite clear that SOLMAE can take all these practices as well due
to its fundamental inheritance from Falcon.

Further implementation challenges are left to do next:

– Improving key generation procedure without floating-point arithmetic using Pornin’s idea [Por23]
due to non–constant time execution of Falcon using native FPU instructions with Cortex M7
Raspberry Pi 3 and others [HW22].

– Implementation of compression and decompression functions to reduce the size of keypairs and
signature using Falcon’s C language implementation.

– Optimized implementation on various platform, etc.

23

References

ADPS16. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange - A new
hope. In USENIX Security 2016, pp. 327–343. USENIX Association, 2016. 19

BDF+11. D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry. Random
oracles in a quantum world. In ASIACRYPT 2011, vol. 7073 of LNCS, pp. 41–69. Springer,
Heidelberg, 2011. 5

BDGL16. A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest neighbor searching
with applications to lattice sieving. In 27th SODA, pp. 10–24. ACM-SIAM, 2016. 19

BKG22. L. Beckwith, J. Kaps, and K. Gaj. Fpqa energy consumption of post-quantum cryptography.
Fourth PQC Standardization Conference, 2022. 23

CHH+23. J. Cottaar, K. Hövelmanns, A. Hülsing, M. M. Tanja Lange, A. Pellegrini, A. Ravagnani,
S. Schäge, M. Trimoska, and B. de Weger. Report on evaluation of kpqc candidates. Eindhoven
University of Technology, OCt., 31 2023. https://groups.google.com/g/kpqc-bulletin/c/
yrfBll_hr14. 23

CPS+20. C. Chuengsatiansup, T. Prest, D. Stehlé, A. Wallet, and K. Xagawa. ModFalcon: Compact
signatures based on module-NTRU lattices. In ASIACCS 20, pp. 853–866. ACM Press, 2020.
18

DLP14. L. Ducas, V. Lyubashevsky, and T. Prest. Efficient identity-based encryption over NTRU
lattices. In ASIACRYPT 2014, Part II, vol. 8874 of LNCS, pp. 22–41. Springer, Heidelberg,
2014. 2, 4

DN12. L. Ducas and P. Q. Nguyen. Faster Gaussian lattice sampling using lazy floating-point
arithmetic. In ASIACRYPT 2012, vol. 7658 of LNCS, pp. 415–432. Springer, Heidelberg, 2012.
3

DP16. L. Ducas and T. Prest. Fast fourier orthogonalization. In Proceedings of the ACM on
International Symposium on Symbolic and Algebraic Computation, ISSAC 2016, Waterloo,
ON, Canada, July 19-22, 2016, pp. 191–198. ACM, 2016. 2, 4

EFG+22. T. Espitau, P.-A. Fouque, F. Gérard, M. Rossi, A. Takahashi, M. Tibouchi, A. Wallet, and
Y. Yu. Mitaka: A simpler, parallelizable, maskable variant of falcon. In EUROCRYPT 2022,
Part III, vol. 13277 of LNCS, pp. 222–253. Springer, Heidelberg, 2022. 2, 4, 12, 13

EK20. T. Espitau and P. Kirchner. The nearest-colattice algorithm: Time-approximation tradeoff for
approx-cvp. Open Book Series, 4(1):251–266, 2020. 18

ENS+23. T. Espitau, T. T. Q. Nguyen, C. Sun, M. Tibouchi, and A. Wallet. Antrag: Annular ntru
trapdoor generation. Proc. of Asiacrypt2023, Part VII, Guangzhou, China, pp. 3–32, 2023. 2

ETWY22. T. Espitau, M. Tibouchi, A. Wallet, and Y. Yu. Shorter hash-and-sign lattice-based signatures.
Proc. of CRYPTO 2022, Part II, pp. 245–276, 2022. 4, 5, 10, 16

GHK+21. R. Gonzalez, A. Hülsing, M. J. Kannwischer, J. Krämer, T. Lange, M. Stöttinger, E. Waitz,
T. Wiggers, and B.-Y. Yang. Verifying post-quantum signatures in 8 kb of ram. In Post-
Quantum Cryptography, pp. 215–233, Cham, 2021. Springer International Publishing. 23

GPV08. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryp-
tographic constructions. In 40th ACM STOC, pp. 197–206. ACM Press, 2008. 2, 3, 4, 5,
12

GS23. J. Goertzen and D. Stebila. Post-quantum signatures in dnssec via request-based fragmentation.
In Post-Quantum Cryptography, pp. 535–564, Cham, 2023. Springer Nature Switzerland. 23

HHP+03. J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, and W. Whyte. NTRUSIGN:
digital signatures using the NTRU lattice. In Topics in Cryptology - CT-RSA 2003, San
Francisco, CA, USA, April 13-17, 2003, vol. 2612, pp. 122–140. Springer, 2003. 3

How07. N. Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against
NTRU. In CRYPTO 2007, vol. 4622 of LNCS, pp. 150–169. Springer, Heidelberg, 2007. 19

HPRR20. J. Howe, T. Prest, T. Ricosset, and M. Rossi. Isochronous gaussian sampling: From inception
to implementation. In Post-Quantum Cryptography - 11th International Conference, PQCrypto
2020, pp. 53–71. Springer, Heidelberg, 2020. 14, 19, 20

HPS98. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryptosystem.
In Algorithmic Number Theory, Third International Symposium, ANTS-III, Portland, Oregon,
USA, June 21-25, 1998, vol. 1423 of Lecture Notes in Computer Science, pp. 267–288. Springer,
1998. 3

HW22. J. Howe and B. Westerbaan. Benchmarking and analysing nist pqc lattice-based signature
scheme standards on the arm cortex–m7. Fourth PQC Standardization Conference, 2022. 23

KEF20. P. Kirchner, T. Espitau, and P.-A. Fouque. Fast reduction of algebraic lattices over cyclotomic
fields. In CRYPTO 2020, Part II, vol. 12171 of LNCS, pp. 155–185. Springer, Heidelberg,
2020. 18

24

https://groups.google.com/g/kpqc-bulletin/c/yrfBll_hr14
https://groups.google.com/g/kpqc-bulletin/c/yrfBll_hr14

KF17. P. Kirchner and P.-A. Fouque. Revisiting lattice attacks on overstretched NTRU parameters.
In EUROCRYPT 2017, Part I, vol. 10210 of LNCS, pp. 3–26. Springer, Heidelberg, 2017. 18

Kim23a. H. Kim. Personal correspondence, 2023. Provide upon request. 21
Kim23b. K. Kim. Theoretical and empirical analysis of falcon and solmae using their python implemen-

tation. Proc. of ICISC2023, Seoul, Korea, 2023. 20
Kle00. P. N. Klein. Finding the closest lattice vector when it’s unusually close. In Proceedings of the

Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, January 9-11, 2000, San
Francisco, CA, USA, pp. 937–941. ACM/SIAM, 2000. 12

KTE+23. K. Kim, M. Tibouchi, T. Espitau, A. Takashima, A. Wallet, Y. Yu, S. Guilley, and S. Kim.
Solmae. KpqC Round 1 Submission, 2023. 5, 23

Laa16. T. Laarhoven. Search problems in cryptography: from fingerprinting to lattice sieving. PhD
thesis, Mathematics and Computer Science, 2016. Proefschrift. 19

MdJvH+20. M. Müller, J. de Jong, M. van Heesch, B. Overeinder, and R. van Rijswijk-Deij. Retrofitting
post-quantum cryptography in internet protocols: A case study of dnssec, Oct. 2020. 23

MW17. D. Micciancio and M. Walter. Gaussian sampling over the integers: Efficient, generic, constant-
time. In CRYPTO 2017, Part II, vol. 10402 of LNCS, pp. 455–485. Springer, Heidelberg, 2017.
17

NR06. P. Q. Nguyen and O. Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU
signatures. In EUROCRYPT 2006, vol. 4004 of LNCS, pp. 271–288. Springer, Heidelberg,
2006. 3

Pei10. C. Peikert. An efficient and parallel Gaussian sampler for lattices. In CRYPTO 2010, vol.
6223 of LNCS, pp. 80–97. Springer, Heidelberg, 2010. 4, 12

PFH+20. T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Ricos-
set, G. Seiler, W. Whyte, and Z. Zhang. FALCON. Technical report, National Insti-
tute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions. 11, 14

PFH+22. T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Ricos-
set, G. Seiler, W. Whyte, and Z. Zhang. FALCON. Technical report, National Insti-
tute of Standards and Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022. 2

Por19. T. Pornin. New efficient, constant-time implementations of falcon. Cryptology ePrint Archive,
Paper 2019/893, 2019. https://eprint.iacr.org/2019/893. 19

Por23. T. Pornin. Improved key pair generation for falcon, bat and hawk. Cryptology ePrint Archive,
Paper 2023/290, 2023. https://eprint.iacr.org/2023/290. 5, 23

PP19. T. Pornin and T. Prest. More efficient algorithms for the NTRU key generation using the
field norm. In PKC 2019, Part II, vol. 11443 of LNCS, pp. 504–533. Springer, Heidelberg,
2019. 8, 9

Pre15. T. Prest. Gaussian Sampling in Lattice-Based Cryptography. PhD thesis, École Normale
Supérieure, Paris, France, 2015. 2, 4, 12, 13

Pre17. T. Prest. Sharper bounds in lattice-based cryptography using the Rényi divergence. In
ASIACRYPT 2017, Part I, vol. 10624 of LNCS, pp. 347–374. Springer, Heidelberg, 2017. 12

Pre23. T. Prest. Lessons learned talks of the selected candidates: Falcon. Proc. of RWPQC2023,
Tokyo, Mar. 26, 2023. https://www.youtube.com/watch?v=J0QpSV2xSvM&t=17347s. 23

SKD00. D. Sikeridis, P. Kampanakis, and M. Devetsikiotis. Post-quantum authentication in tls 1.3: A
performance study. In Proceedings of NDSS Symposium, San Diego, California, USA. The
Internet Society, Feb. 23–26, 2000. 23

TBRM22. G. Twardokus, N. Bindel, H. Rahbari, and S. McCarthy. When cryptography needs a hand:
Practical post-quantum authentication for v2v communications. Cryptology ePrint Archive,
Paper 2022/483, 2022. https://eprint.iacr.org/2022/483. 23

ZSS20. R. K. Zhao, R. Steinfeld, and A. Sakzad. Facct: Fast, compact, and constant-time discrete
gaussian sampler over integers. IEEE Transactions on Computers, 69(1):126–137, 2020. 14

25

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2019/893
https://eprint.iacr.org/2023/290
https://www.youtube.com/watch?v=J0QpSV2xSvM&t=17347s
https://eprint.iacr.org/2022/483

	Introduction
	Design rationale
	Advantages and limitations
	Errata and their correction

	Preliminaries
	Specifications
	High-level view of the SOLMAE's signature scheme
	Design of [alg:keygen]KeyGen
	Design of [alg:sign]Sign:
	Design of [alg:sample]Sample:
	Design of [alg:verif]Verif:
	Miscellaneous
	Domain parameters

	Security
	Model for lattice reduction
	Key recovery attack
	Signature forgery by reduction to Approx-CVP
	On the other attacks on SOLMAE
	Concrete security
	Side-Channel Resilience

	Performance analysis
	Description of platform
	Performance comparison

	Implementation
	Encoding Formats

	Concluding Remarks

