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Abstract. In 2023, since NIST has recently selected Falcon as one of quantum–resistant
digital signatures which uses the hash-and-sign paradigm in the style of Gentry–Peikert–
Vaikuntanathan framework and instantiated over NTRU lattices, SOLMAE as a variant of
Falcon was submitted to KpqC competition by taking all the pros of Falcon and Mitaka
and reducing their cons as much as possible.
In this paper, we suggest the asymptotic computational complexity of Falcon and SOLMAE
that take Θ(n log n) in their KeyGen, Sign and Verif procedures simultaneously and verify
their performance by ANSI C language implementation. Our experiment shows that SOLMAE
achieves the same high security and short key and signature sizes as Falcon but faster Sign
procedure, takes a bit longer KeyGen procedure. However, the Sign and Verif procedures of
SOLMAE-512 is about 10 times faster than those of ECDSA P256r1 currently used in TSL
or SSL.

Keywords: Lattice-based cryptography · Hash-and-sign paradigm · NTRU trapdoors ·
Discrete Gaussian sampling · C language implementation

1 Introduction

When Shor [16] has proposed an efficient randomized algorithm on a hypothetical quantum computer
in 1999 to integer factorization and discrete logarithm problems in a polynomial time, it was beyond
our imagination building for the powerful computing environment at that time. Currently the threat
of attacking the current (or classical) secure system by using the quantum computer is expected to
be right at our fingertips due to the aggressive road map by IBM quantum computing. We are very
concerned about so called Harvest Now, Decrypt Later attack [17] which is a surveillance strategy
that relies on the acquisition and long-term storage of currently unreadable encrypted data awaiting
possible breakthroughs in decryption technology that would render it readable in the future.

Due to the substantial amount of research on quantum computers, large-scale quantum computers
if built, can break many public-key cryptosystems based on the number–theoretic hard problems in
use. In 2016, NIST [14] has initiated Post Quantum Cryptography(PQC) project to solicit, evaluate,
and standardize one or more quantum-resistant cryptographic algorithms for Key Encapsulation
Mechanism(KEM) and Digital Signature(DS) worldwide. After several rounds, NIST has finally
selected CRYSTALS-Kyber for KEM and CRYSTALS-Dilithium, Falcon, and SPHINCS+ for DS
in 2022.

Influenced by this NIST PQC project, Korean cryptographic society led by KpqC task force [11]
has called for soliciting Korean PQC candidates by the end of Oct. in 2022. By the due of submission,
7 candidates KEM and 8 candidates DS for KpqC competition were submitted and their details are
available at https://kpqc.or.kr/.

SOLMAE which stands for an acronym of quantum–Secure algOrithm for Long–term Message
Authentication and Encryption was submitted to KpqC Competition as one of DS candidate
algorithms which is a lattice-based signature scheme inspired by several pioneering works based
on the hash-then-sign signature paradigm proposed by Gentry, Peikert and Vaikuntanathan [5].
SOLMAE is inspired from Falcon’s design. Some of the new theoretical foundations were laid out
in the presentation of Mitaka [1] while keeping the security level of Falcon with 5 NIST levels
of security I to V. At a high level, SOLMAE removes the inherent technicality of the sampling
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procedure, and most of its induced complexity from an implementation standpoint, for free, that is
with no loss of efficiency. This theoretical simplicity translates into faster operations while preserving
signatures and verification key sizes, on top of allowing for additional features absent from Falcon,
such as enjoying cheaper masking and being parallelizable.

The companion work of this paper was published at Proc. of ICSICS2023 [9] to discuss with
the performance comparison using their Python implementation of both algorithms which can’t be
accepted their exact performance evaluation in real-time applications. On the other hand, this paper
discusses the real performance comparison between 2 algorithms by their ANSI C implementations
which is more valuable to the practitioners and easy to grasp their execution times. To the best
of our knowledge, there is no the open literature to compare Falcon and SOLMAE directly
from the point of their asymptotic complexity and performance. In this paper, after giving a
brief description from the specification of Falcon and SOLMAE, we discuss their asymptotic
computational complexity of KeyGen, Sign and Verif procedures from the theoretical point of
view and suggest our performance evaluation including performance comparison of SOLMAE-512
and ECDSA P256r1.

The organization of this paper is as follows: In Section 2, we define our notations and definition
used in this paper. In Sections 3 and 4, we describe how Falcon and SOLMAE work summarized
from their specifications, respectively. In Section 5, we discuss the asymptotic computational
complexity of Falcon and SOLMAE. Section 6 suggests our performance analysis of Falcon and
SOLMAE in total and commonly-used computations in their C language reference implementation
and gives an exact comparison the performance of SOLMAE-512 and ECDSA P256r1 at the same
level of security. Finally, we will give concluding remarks and challenging issues.

2 Notations and Definition

To keep the consistency to understand Falcon and SOLMAE correctly, we will use the following
notations and definitions used their specification throughout this paper.

Matrices, vectors, and scalars

Matrices will usually be in bold uppercase (e.g. B), vectors in bold lowercase (e.g. v), and scalars -
which include polynomials - in italic (e.g. s). We use the row convention for vectors. The transpose
of a matrix B may be noted Bt. It is to be noted that for a polynomial f , we do not use f ′ to
denote its derivative in this document.

Quotient rings

Let Z and N denote a set of integers and a set of all numbers starting from 1, respectively. Q and R
denote a set of rational numbers and a set of real numbers,respectively. For q ∈ N×, we denote by
Zq the quotient ring Z/qZ. In Falcon and SOLMAE, an integer modulus q = 12, 289 is prime, so
Zq is also a finite field. We denote by Z×

q the group of invertible elements of Zq, and by φ Euler’s
totient function: φ(q) = |Z×

q | = q − 1 = 3 · 212 since q is prime. The rings Q[x]/(ϕ), Z[x]/(ϕ), and
R[x]/(ϕ) where ϕ is a monic minimal polynomial will be interchangeably written as Q, Z, and KR,
respectively for the sake of our convenience.

DFT representation

For d = 2n, we use ϕ(x) = xd + 1. It is a monic polynomial of Z[x], irreducible in Q[x] and
with distinct roots over C. Then ζj = exp(i(2j − 1)π/d) for j = 1, 2, · · · d are roots of ϕ(x). For
f = Σfix

i ∈ KR, we define the coefficient representation as f = (f0, f1, · · · fd−1) and Discrete
Fourier Transform(DFT) representation φ(f) = (φ1(f), · · · , φd(f)).
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Number fields

Let a =
∑d−1

i=0 aix
i and b =

∑d−1
i=0 bix

i be arbitrary elements of the number field Q = Q[x]/(ϕ).
We note a∗ and call (Hermitian) adjoint of a the unique element of Q such that for any root ζ of
ϕ, a∗(ζ) = a(ζ), where · is the usual complex conjugation over C. For ϕ = xd + 1, the Hermitian
adjoint a∗ can be expressed simply:

a∗ = a0 −
d−1∑
i=1

aix
d−i (1)

We extend this definition to vectors and matrices: the adjoint B∗ of a matrix B ∈ Qn×m (resp. a
vector v) is the component-wise adjoint of the transpose of B (resp. v):

B =
[
a b
c d

]
⇔ B∗ =

[
a∗ c∗

b∗ d∗

]
(2)

Inner product

The inner product ⟨·, ·⟩ over Q and its associated norm ∥ · ∥ are defined as:

⟨a, b⟩ = 1
deg(ϕ)

∑
0<i≤d

φi(a) · φi(b) (3)

∥a∥ =
√
⟨a, a⟩ (4)

These definitions can be extended to vectors: for u = (ui) and v = (vi) in Qm, ⟨u, v⟩ =
∑

i⟨ui, vi⟩.
For our choice of ϕ, the inner product coincides with the usual coefficient-wise inner product:

⟨a, b⟩ =
∑

0≤i<d

aibi; (5)

From an algorithmic point of view, computing the inner product or the norm is most easily done
using Eq.(3) if polynomials are in FFT representation, and using Eq.(5) if they are in coefficient
representation. By substituting b = a in Eqs (3) and (5), we get

∥φ(a)∥ =
√

d · ∥a∥. (6)

where ∥ · ∥ is Euclidean norm. Since we know that

∥φ(a)∥ =
√

2 · ∥(Re(φ1(a)), Im(φ1(a)), · · ·Re(φd/2(a)), Im(φd/2(a)))∥, (7)

we get

∥(Re(φ1(a)), Im(φ1(a)), · · ·Re(φd/2(a)), Im(φd/2(a)))∥ =
√

d

2 · ∥a∥. (8)

If a ∈ KR follows the d-dimensional standard normal distribution, it is known that

(Re(φ1(a)), Im(φ1(a)), · · ·Re(φd/2(a)), Im(φd/2(a))) follows Nd/2, (9)

where Nd/2 denotes continuous Gaussian distribution with zero mean and d
2 ·Id(i.e., Identity matrix)

variance.

Ring lattices

For the rings Q = Q[x]/(ϕ) and Z = Z[x]/(ϕ), positive integers m ≥ n, and a full-rank matrix
B ∈ Qn×m, we denote by Λ(B) and call lattice generated by B, the set Zn ·B = {zB | z ∈ Zn}.
By extension, a set Λ is a lattice if there exists a matrix B such that Λ = Λ(B). We may say that
Λ ⊆ Zm is a q-ary lattice if qZm ⊆ Λ.
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NTRU lattices

Let q be an integer, and f ∈ Z[x]/(xd + 1) such that f is invertible modulo q (equivalently, det[f ]
is coprime to q). Let h = g/f mod q and consider the NTRU module associated to h:

MNTRU = {(u, v) ∈ K2
R : hu− v = 0 mod q},

and its lattice version

LNTRU = {(u, v) ∈ Z2d : [h]u− v = 0 mod q}.

This lattice has volume qd. Over KR, it is generated by (f, g) and any (F, G) such that fG−gF = q.
For such a pair (f, g), (F, G), this means that LNTRU has a basis of the form

Bf,g =
[
[f ] [F ]
[g] [G]

]
.

One checks that ([h],−Idd) ·Bf,g = 0 mod q, so the verification key is h. The NTRU-search problem
is : given h = g/f mod q, find any (f ′ = xif, g′ = xig). In its decision variant, one must distinguish
h = g/f mod q from a uniformly random h ∈ Rq := Z[x]/(q, xd + 1) = (Z/qZ)[x]/(xd + 1). These
problems are assumed to be intractable for large d.

Discrete Gaussians

For σ, µ ∈ R with σ > 0, we define the Gaussian function ρσ,µ as ρσ,µ(x) = exp(−|x − µ|2/2σ2),
and the discrete Gaussian distribution DZ,σ,µ over the integers as:

DZ,σ,µ(x) = ρσ,µ(x)∑
z∈Z ρσ,µ(z) (10)

The parameter µ may be omitted when it is equal to zero.

Gram-Schmidt orthogonalization

Any matrix B ∈ Qn×m can be decomposed as follows:

B = L× B̃ (11)

where L is lower triangular with 1’s on the diagonal, and the rows b̃i’s of B̃ verify ⟨b̃i, b̃j⟩ = 0
for i ≠ j. When B is full-rank, this decomposition is unique, and it is called the Gram-Schmidt
orthogonalization (or GSO). We also call the Gram-Schmidt norm of B the following value:

∥B∥GS = max
b̃i∈B̃

∥b̃i∥ (12)

The LDL∗ decomposition

The LDL∗ decomposition writes any full-rank Gram matrix as a product LDL∗, where L ∈ Qn×n is
lower triangular with 1’s on the diagonal, and D ∈ Qn×n is diagonal. The LDL∗ decomposition
and the GSO are closely related as for a basis B, there exists a unique GSO B = L · B̃, and for
a full-rank Gram matrix G, there exists a unique LDL∗ decomposition G = LDL∗. If G = BB∗,
then G = L · (B̃B̃∗) · L∗ is a valid LDL∗ decomposition of G. As both decompositions are unique,
the matrices L in both cases are actually the same. In a nutshell:

[L · B̃ is the GSO of B]⇔ [L · (BB̃∗) · L∗ is the LDL∗ decomposition of (BB∗)]. (13)

The reason why we present both equivalent decompositions is that the GSO is a more familiar
concept in lattice-based cryptography, whereas the use of LDL∗ decomposition is faster and therefore
makes more sense from an algorithmic point of view.
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3 Falcon Algorithm

A group of top-notch cryptographers, Hoffstein, Pipher and Silverman [7] suggested new public–key
cryptosystem based on a polynomial ring in 1997 as an alternative to RSA and DH whose difficulties
are based on number–theoretic hard problems such as integer factorization and discrete log problem,
respectively. They founded the company so–called as NTRU 3 Cryptosystem with Lieman and
initiated an open–source lattice-based cryptography consisting of two algorithms: NTRUEncrypt
used for encryption/decryption and NTRUSign used for digital signatures. Their security relies
on the presumed difficulty of factoring certain polynomials in a truncated polynomial ring into a
quotient of two polynomials having very small coefficients.

NTRUSign was designed based on the GGH signature scheme [6] which was proposed in
1995 based on solving the closest vector problem (CVP) in a lattice and asymptotically is more
efficient than RSA in the computation time for encryption, decryption, signing, and verifying are
all quadratic in the natural security parameter. The signer demonstrates knowledge of a good basis
for the lattice by using it to solve CVP on a point representing the message; the verifier uses a bad
basis for the same lattice to verify that the signature under consideration is actually a lattice point
and is sufficiently close to the message point.

On the other hand, Min et al.[12] suggested weak property of malleability of NTRUSign using
the annihilating polynomial from a given message and signature pair to generate a valid signature.
Nguyen and Regev [13] had cryptanalyzed the original GGH signature scheme including NTRUSign
in 2006 successfully extracting secret information from many known signatures characterized by
multivariate optimization problems. Their experiments showed that 90,000 signatures are sufficient
to recover the NTRUSign–251 secret key.

In a nutshell, Falcon follows a framework introduced in 2008 by Gentry, Peikert, and Vaikun-
tanathan [5] which we call the GPV framework for short over the NTRU lattices and uses a
typically hash–and–sign paradigm. Their high–level idea is the following:

1. The public key is a long basis of a q–ary lattice.
2. The private key is (essentially) a short basis of the same lattice.
3. In the signing procedure, the signer:

(a) generates a random value, salt;
(b) computes a target c = H(M ||salt), where H is a hash function sending input to a random–

looking point (on the grid);
(c) uses his knowledge of a short basis to compute a lattice point v close to the target c;
(d) outputs (salt, s), where s = c− v.

4. The verifier accepts the signature (salt, s) if and only if:
(a) the vector s is short;
(b) H(M ||salt)− s is a point on the lattice generated by his public key.

Only the signer should be able to efficiently compute v close enough to an arbitrary target. This
is a decoding problem that can be solved when a basis of short vectors is known. On the other hand,
anyone wanting to check the validity of a signature should be able to verify lattice membership.
The KeyGen, Sign and Verif procedures for Falcon will be introduced briefly in the later Section
by restating the original specification as in [3]. For details, the readers can refer to [3].

3.1 Key Generation of Falcon

For the class of NTRU lattices, a trapdoor pairs is (h, Bf,g) where h = f−1g, Bf,g is trapdoor
basis over LNTRU and Pornin & Prest [15] showed that a completion (F, G) can be computed in
O(d log d) time from short polynomials f, g ∈ Z. In practice, their implementation is as efficient
as can be for this technical procedure: it is called NtruSolve in Falcon. Their algorithm only
depends on the underlying ring and has now a stable version for Z[x]/(xd + 1), where d = 2n.

Figure 1 illustrates the flowchart of the key generation procedure for Falcon.
3 Number Theorists ‘R’ Us, or Number Theory Research Unit, or N–th degree TRuncated polynomial

Ring.
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KeyGen

NtruGen

NtruSolve

ffLDL∗

LDL∗

Fig. 1: Flowchart of KeyGen for Falcon

Algorithm 1 describes the pseudo–code for key generation of Falcon.
Algorithm 1: KeyGen of Falcon

Input: A monic polynomial ϕ ∈ Z[x], a modulus q
Output: A secret key sk, a public key pk

1: f, g, F, G← NtruGen ; /* Solving the NTRU equation */

2: B←
[

g −f
G −F

]
;

3: B̂← FFT(B) ; /* Compute FFT for each {g,−f, G,−F} */

4: G← B̂× B̂∗;
5: T← ffLDL∗(G); /* Compute the LDL* tree */
6: for each leaf of T do
7: leaf.value← σ/

√
leaf.value ; /* Normalization step */

8: sk← (B̂, T);
9: h← gf−1modq;

10: pk← h;
11: return sk, pk;

3.2 Signing of Falcon

At a high level, the signing procedure in Falcon is at first to compute a hashed value c ∈ Zq[x]/(ϕ)
from the message, M and a salt r, then using the secret key, f, g, F, G to generate two short values
(s1, s2) such that s1 + s2h = c mod q. An interesting feature is that only the first half of the
signature (s1, s2) needs to be sent along the message, as long as h is available to the verifier. This
comes from the identity hs1 = s2 mod q defining these lattices, as we will see in the Verif algorithm
description.

The core of Falcon signing is to use ffSampling (Algorithm 11 in [3]) which applies a
randomizing rounding according to Gaussian distribution on the coefficient of t = (t0, t1) ∈
(Q[x]/(ϕ))2 stored in the Falcon Tree, T at the KeyGen procedure of Falcon.

This fast Fourier sampling algorithm can be seen as a recursive version of Klein’s well–known
trapdoor sampler, but cannot be computed in parallel also known as the GPV sampler. Klein’s
sampler uses a matrix L and the norm of Gram–Schmidt vectors as a trapdoor while Falcon
are using a tree of non-trivial elements in such matrices. Note that Fouque et. al.[4] suggested
Gram-Schmidt norm leakage in Falcon by timing side channels in the implementation of the
one-dimensional Gaussian samplers.

Falcon cannot output two different signatures for a message. This well-known concern of
the GPV framework can be addressed in several ways, for example, making a stateful scheme
or by hash randomization. Falcon chose the latter solution for efficiency purposes. In practice,
Sign adds a random “salt” r ∈ {0, 1}k, where k is large enough that an unfortunate collision
of messages is unlikely to happen, that is, it hashes (r||M) instead of M . A signature is then
sig = (r, Compress(s1)).

Figure 2 and Algorithm 2 sketches the signing procedure for Falcon and shows its pseudo-code
for Falcon, respectively.
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HashToPoint ffSampling

SamplerZ

BerExp

ApproxExp

Compress

SHAKE–256

BaseSampler

Fig. 2: Flowchart of Sign for Falcon.

Algorithm 2: Sign of Falcon
Input: A message M ∈ {0, 1}∗, secret key sk, a bound γ.
Output: A pair (r, Compress(s1)) with r ∈ {0, 1}320 and ∥(s1, s2)∥ ≤ γ.
1: r ← U({0, 1}320);
2: c← HashToPoint(r||M, q, n);
3: t← (− 1

q FFT(c)⊙ FFT(F ), 1
q FFT(c)⊙ FFT(f)) ; /* t = (FFT(c), FFT(0)) · B̂

−1
*/

4: do
5: do
6: z← ffSamplingn(t, T);
7: s = (t− z)B̂; /* At this point, s follows Gaussian distribution. */
8: while ||s||2 > γ
9: (s1, s2)← FFT-1(s);

10: s← Compress(s2, 8 · sbytelen− 328); /* Remove 1 byte for the header, and 40
bytes for r */

11: while(s = ⊥)
12: return (r, s);

3.3 Verification of Falcon:

The last step of the scheme is thankfully simpler to describe. Upon receiving a signature (r, s) and
message M , the verifier decompresses s to a polynomial s1 and c = (0, H(r||M)), then wants to
recover the full signature vector v = (s1, s2). If v is a valid signature, the verification identity is
(h,−1) · (c− v) = −H(r||M)− hs1 + s2 mod q = 0, or equivalently the verifier can compute

s2 = H(r||M) + hs1 mod q.

This is computed in the ring Rq, and can be done very efficiently for a good choice of modulus q
using the Number Theoretic Transform (NTT). Falcon currently follow the standard choice of
q = 12, 289, as the multiplication in NTT format amounts to d integer multiplications in Z/qZ. The
last step is to check that ∥(s1, s2)∥2 ≤ γ2: the signature is only accepted in this case. The rejection
bound γ comes from the expected length of vectors outputted by Sample described as Algorithm
4 in [10].

Since they are morally Gaussian, they concentrate around their standard deviation; a “slack”
parameter τ = 1.042 is tuned to ensure that 90% of the vectors generated by Sample will get
through the loop:

γ = τ · σsig ·
√

2d.
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Algorithm 3 shows the pseudo–code of verification procedure of Falcon.
Algorithm 3: Verif of Falcon

Input: A signature (r, s) on M , a public key pk = h, a bound γ.
Output: Accept or Reject.

1: s1 ← Decompress(s);
2: c← H(r||M);
3: s2 ← c + hs1 mod q;
4: if ∥(s1, s2)∥2 > γ2 then
5: return Reject.

end
6: return Accept.

4 SOLMAE Algorithm

SOLMAE is inspired from Falcon’s design. Some of the new theoretical foundations were laid out
in the presentation of Mitaka [1]. At a high level, it removes the inherent technicality of the sampling
procedure, and most of its induced complexity from an implementation standpoint, for free, that is
with no loss of efficiency. This simplicity translates into faster operations while preserving signatures
and verification keys sizes, on top of allowing for additional features absent from Falcon, such as
enjoying cheaper masking, and being parallelizable. By using the novel compression techniques and
tools of [2], SOLMAE can also obtain smaller signatures and verification keys than those already
achieved by Falcon. To sum up, SOLMAE aims to achieve better performances for the same
security and advantages as Falcon.

While its predecessor Falcon could be summed-up as an efficient instantiation of the GPV
framework, SOLMAE takes it one step further. The main ingredients in SOLMAE are:

– Hybrid sampler is a faster, simpler, parallelizable, and maskable Gaussian sampler to generate
signatures;

– Optimally tuned key generation algorithm, enhancing the security of the used hybrid
sampler to that of Falcon’s level4;

– Dedicated compression techniques to reduce bandwidth consumption even further, at no
cost on the security according to our analyses.

The KeyGen, Sign and Verif procedures for SOLMAE will be introduced briefly in the later
Section by restating the original specification in [10]. For details, the readers can refer to [10].

4.1 Key Generation of SOLMAE

An important concern here is that not all pair (f, g), (F, G) gives good trapdoor pairs for Sample
described as Algorithm 4 in [10]. Schemes such as Falcon and Mitaka solve this technicality
essentially by sieving among all possible bases to find the ones that reach an acceptable quality for
the Sample procedure. This technique is costly, and many tricks were used to achieve an acceptable
KeyGen. This sieving routine was bypassed by redesigning completely how good quality bases can be
found. This improves the running time of KeyGen and also increases the security offered by Sample.
In any case, note that NtruSolve’s running time largely dominates the overall time for KeyGen:
this is not avoidable as the basis completion algorithm requires working with quite large integers
and relatively high-precision floating-point arithmetic.

At the end of the procedure, the secret key contains not only the secret basis but also the
necessary data for Sign and Sample. This additional information can be represented by elements
in KR and is computed during or at the end of NtruSolve. All-in-all, KeyGen outputs:

sk = (b1 = (f, g), b2 = (F, G), b̃2 = (F̃ , G̃), Σ1, Σ2, β1, β2),
pk = (h, q, σsig, η),

4 This corresponds to NIST-I and NIST-V requirements.
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where we recall that h = g/f mod q. These parameters and a table of their practical values are
described more thoroughly in [10].

Informally, they correspond to the following:

– (f, g), (F, G) is a good basis of the lattice LNTRU associated to h, with quality Q(f, g) = α, and
b̃2 is the Gram-Schmidt orthogonalization of (F, G) with respect to (f, g);

– σsig, η are respectively the standard deviation for signature vectors, and a tight upper bound
on the “smoothing parameter of Zd”;

– Σ1, Σ2 ∈ KR represent covariance matrices for two intermediate Gaussian samplings in Sample;
– the vectors β1, β2 ∈ K2

R represent the orthogonal projections from K2
R onto KR · b1 and KR · b̃2

respectively. In other words, they act as “getCoordinates” for vectors in K2
R. They are used by

Sample and are precomputed for efficiency.

Algorithm 4 computes the necessary data for signature sampling, then outputs the key pair.
Note that NtruSolve could also compute the sampling data and the public key, but for clarity,
the pseudo-code gives these tasks to KeyGen of SOLMAE. Figure 3 sketches the key generation
procedure of SOLMAE

KeyGen

PairGen NtruSolve Precomputation: Σ1, Σ2, β1, β2

UnifCrown

Fig. 3: Flowchart of KeyGen of SOLMAE.

Algorithm 4: KeyGen of SOLMAE
Input: A modulus q, a target quality parameter 1 < α, parameters σsig, η > 0
Output: A basis ((f, g), (F, G)) ∈ R2 of an NTRU lattice LNTRU with Q(f, g) = α;

1: repeat
b1 := (f, g)← PairGen(q, α, R−, R+)}
until f is invertible modulo q;
; /* Secret basis computation between R− and R+ */

2: b2 := (F, G)← NtruSolve(q, f, g):

3: h← g/f mod q ; /* Public key data computation */

4: γ ← 1.1 · σsig ·
√

2d ; /* tolerance for signature length */

5: β1 ← 1
⟨b1,b1⟩K

· b1 ; /* Sampling data computation, in Fourier domain */

6: Σ1 ←
√

σ2
sig

⟨b1,b1⟩K
− η2;

7: b̃2 := (F̃ , G̃)← b2 − ⟨β1, b2⟩ · b1;
8: β2 ← 1

⟨b̃2,b̃2⟩K

· b̃2;

9: Σ2 ←
√

σ2
sig

⟨b̃2,b̃2⟩K

− η2;

10: sk← (b1, b2, b̃2, Σ1, Σ2, β1, β2);
11: pk← (q, h, σsig, η, γ);
12: return sk, pk;

The function of two subroutines PairGen and NtruSolve are described below:
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1. The PairGen algorithm generates d complex numbers (xjeiθj )j≤d/2, (yjeiθj )j≤d/2 to act as the
FFT representations of two real polynomial fR, gR in KR. The magnitude of these complex
numbers is sampled in a planar annulus whose small and big radii are set to match a target
Q(f, g) with UnifCrown ([10]). It then finds close elements f, g ∈ Z by round-off, unless maybe
the rounding error was too large. When the procedure ends, it outputs a pair (f, g) such that
Q(f, g) = α, where α depends on the security level.

2. NtruSolve is exactly Pornin & Prest’s algorithm and implementation [15]. It takes as input
(f, g) ∈ Z2 and a modulus q, and outputs (F, G) ∈ Z2 such that (f, g), (F, G) is a basis of
LNTRU associated to h = g/f mod q. It does so by solving the Bézout-like equation fG−gF = q
in Z using recursively the tower of subfields for optimal efficiency.

4.2 Signing of SOLMAE

Recall that NTRU lattices live in R2d. Their structure also helps to simplify the preimage compu-
tation. Indeed, the signer only needs to compute m = H(M) ∈ Rd, as then c = (0, m) is a valid
preimage: the corresponding polynomials satisfy (h, 1) · c = m.

As the same with Sign procedure of Falcon, an interesting feature is that only the first half
of the signature (s1, s2) ∈ LNTRU needs to be sent along the message, as long as h is available to
the verifier. This comes from the identity hs1 = s2 mod q defining these lattices, as we will see in
the Verif algorithm description. 5

Because of their nature as Gaussian integer vectors, signatures can be encoded to reduce the size
of their bit-representation. The standard deviation of Sample is large enough so that the ⌊log√q⌋
least significant bits of one coordinate are essentially random.

In practice, Sign adds a random “salt” r ∈ {0, 1}k, where k is large enough that an unfortunate
collision of messages is unlikely to happen, that is, it hashes (r||M) instead of M — our analysis in
this regard is identical to Falcon. A signature is then sig = (r, Compress(s1)). SOLMAE cannot
output two different signatures for a message like Falcon which was mentioned in Section 3.2.

Figure 4 sketches the signing procedure of SOLMAE and Algorithm 5 shows its pseudo–code.

Sign

Sample Compress

PeikertSampler

N-Sampler Z-Sampler

Fig. 4: Flowchart of Sign of SOLMAE.

5 The same identity can also be used to check the validity of signatures only with a hash of the public key
h, requiring this time send both s1 and s2, but we will not consider this setting here.
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Algorithm 5: Sign of SOLMAE
Input: A message M ∈ {0, 1}∗, a tuple sk = ((f, g), (F, G), (F̃ , G̃), σsig, Σ1, Σ2, η), a

rejection parameter γ > 0.
Output: A pair (r, Compress(s1)) with r ∈ {0, 1}320 and ∥(s1, s2)∥ ≤ γ.
1: r ← U({0, 1}320);
2: c← (0, H(r||M));
3: ĉ← FFT(c);
4: repeat

(ŝ1, ŝ2)← ĉ− Sample(ĉ, sk) ; /* (s1, s2)← DLNTRU,c,σsig */

until ∥(FFT-1(ŝ1), FFT-1(ŝ2))∥2 ≤ γ2;
5: s1 ← FFT-1(ŝ1);
6: s← Compress(s1);

return (r, s);

4.3 Verification of SOLMAE

This is the same as the Verification of Falcon stated in Section 3.3.

5 Asymptotic Complexity of Falcon and SOLMAE

To the best of our allowable knowledge as of writing this paper, we will suggest the asymptotic
computational complexity of Falcon and SOLMAE algorithms with their pseudo–codes described
their specifications based on the following assumptions to make our computation work to be simple:

(i) Multiplication of large integers can be done by integer–type Karatsuba algorithm or Schönhage-
Strassen algorithm. However, we assumed multiplication of large integers can be done in
Θ(1).

(ii) The multiplication and division of polynomials in Z[x]/(xd + 1) or Q[x]/(xd + 1) are assumed to
compute the polynomial–type Karatsuba algorithm or operate pointwise in Fourier domain. It
is known that the time complexity of the Karatsuba algorithm and FFT(or FFT-1) are Θ(d3/2)
and Θ(d log(d)), respectively. We assume that all polynomial operations are done in the Fourier
domain, so polynomial multiplication and division in Z[x]/(xd + 1) or Q[x]/(xd + 1) takes
Θ(d log(d)) time. Since every inverse element of Zq is stored in the list and the division of
polynomials in Zq[x]/(xd + 1) can be done in the NTT domain, the division of polynomials in
Zq[x]/(xd + 1) also takes Θ(d log d).

(iii) Some number of rejection samplings may inevitably happen in Falcon and SOLMAE. If
one–loop for rejection sampling takes t times and its probability of the acceptance is p, the
expectation value of the total time is Σ∞

k=1p(1− p)k−1 · kt = t
p ≈ t since the value 1/p does not

influence our asymptotic analysis due to its fixed constant value. So, we may ignore the number
of rejections occurred in the rejection sampling. In fact, our experiment reveals that more or
less 5 times rejections have occurred.

(iv) Ignore some minor operations and trivial computations which do not affect the total asymptotic
complexity so much.

5.1 Asymptotic Complexity of Falcon

Using the previous assumption stated in Section 5, Table 1 is the detailed analysis of the asymptotic
complexity of KeyGen in Falcon from its algorithm whose total complexity to complete takes
Θ(d log d).
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Table 1: Asymptotic complexity of KeyGen in Falcon
No. Computation Complexity Location Comment(d is degree)

1 NTRUGen(ϕ, q) Θ(d log d) Step 1 of Alg. 1 See below†

2 FFT(f) Θ(d log d) Step 3 of Alg. 1
3 B × B̂∗ Θ(d log d) Step 4 of Alg. 1 Polynomial multiplications
4 ffLDL∗(G) Θ(d log d) Step 5 of Alg. 1 See below‡

5 Normalization Θ(d) Step 6–7 of Alg. 1 d leaf nodes in Falcon tree
6 gf−1 mod q Θ(d log d) Step 9 of Alg. 1 See the beginning of Section 5

Total Complexity of KeyGen : Θ(d log d)
† In Algorithm 6: NTRUGen(), Step 2 and Step 5(or 6) take Θ(d) and Θ(d log d), respectively.
Since the recurrence relation of NtruSolve is T (d) = T (d/2) + Θ(d log d), thus Step 8 in
Algorithm 6 takes Θ(d log d).
‡ Algorithm 9: ffLDL∗(G) in [3] recursively calls ffLDL∗(G0) and ffLDL∗(G1), and other
processes such as LDL∗ and Splitfft both take Θ(d), so the recursive formula is T (d) =
2T (d/2) + Θ(d). From this, we can get T (d) = Θ(d log d).

Algorithm 6: NTRUGen(ϕ, q)
Input: A monic polynomial ϕ ∈ Z[x] of degree n, a modulus q
Output: Polynomials f, g, F, G

1: σ ← 1.17
√

q/2n;
2: for i from 0 to n− 1 do

fi ← DZ,σ{f,g},0;
gi ← DZ,σ{f,g},0;
end

3: f ← Σifix
i;

4: g ← Σigix
i;

5: if NTT(f) contains 0 as a coefficient then
restart
end

6: γ ← max{∥(g,−f)∥, ∥( qf∗
ff∗+gg∗ , qg∗

ff∗+gg∗ )∥};
7: if γ > 1.17√q then

restart
end
;

8: F, G← NtruSolven,q(f, g);
9: if (F, G) = ⊥ then

restart
end
return f, g, F, G;

Tables 2 and 3 are the asymptotic complexity of Sign and Verif in Falcon, respectively whose
total complexity to complete takes Θ(d log d).
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Table 2: Asymptotic complexity of Sign in Falcon
No. Computation Complexity Location Comment(d is degree)

1 HashToPoint(r∥M, q, n) Θ(d) Step 2 of Alg. 2
2 FFT Θ(d log d) Step 3 of Alg. 2
3 ffSamplingn(t, T ) Θ(d log d) Step 6 of Alg. 2 See below †
4 (t − z)B̂ Θ(d log d) Step 7 of Alg. 2 Polynomial multiplications
5 ∥s∥2 Θ(d) Step 8 of Alg. 2 Calculating norm
6 invFFT Θ(d log d) Step 9 of Alg. 2
7 Compress Θ(d) Step 10 of Alg. 2 See below ‡

Total Complexity of Sign: Θ(d log d)
† ffSamplingd recursively calls ffSamplingd/2 two times, and other processes such as
splitfft and mergefft take Θ(d). So, the recursive formula is T (d) = 2T (d/2) + Θ(d). If
we solve this, we get T (d) = Θ(d log d).
‡ The compression function converts d degree polynomial into string of length slen(= 666).
slen ≈ d, so it is irrelevant to say that the compression function takes Θ(d).

Table 3: Asymptotic complexity of Verif in Falcon
No. Computation Complexity Location Comment(d is degree)

1 HashToPoint(r∥m, q, n) Θ(d) Step 1 of Alg. 3
2 Decompress(s, 8 · sbytelen − 328) Θ(d) Step 2 of Alg. 3 More or less on par with Compress in Table 2
3 c − s2h mod q Θ(d log d) Step 5 of Alg. 3 Polynomial multiplication
4 ∥(s1, s2)∥2 Θ(d) Step 6 of Alg. 3 Calculating norm

Total Complexity of Verif: Θ(d log d)

5.2 Asymptotic Complexity of SOLMAE

Based on the previous assumption stated in Section 5 as the same manner as we analyze the
asymptotic complexity of Falcon, Table 4 is the asymptotic complexity of KeyGen in SOLMAE
whose total complexity to complete takes Θ(d log d).

Table 4: Asymptotic complexity of KeyGen in SOLMAE
No. Computation Complexity Location Comment(d is degree)

1 Pairgen Θ(d log d) Step 1 of Alg. 4 See below †
2 NtruSolve(q, f, g) Θ(d log d) Step 2 of Alg. 4 Explained in Table 1
3 g/f mod q Θ(d log d) Step 3 of Alg. 4 Polynomial operations
4 Key computations Θ(d log d) Step 4-9 of Alg. 4 Polynomial operations

Total Complexity of KeyGen: Θ(d log d)
† In Algorithm 7:PairGen, Steps 1,3,and 5 all take Θ(d) time. Steps 2 and 4 take
Θ(d log d) time.
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Algorithm 7: PairGen
Input: A modulus q, a target quality parameter 1 < α, two radii parameters 0 < R− < R+
Output: A pair (f, g) with Q(f, g) = α
1: for i = 1 to d/2 do

xi, yi ← UnifCrown(R−, R+) ; /* see Algorithm 9 in [10] */
θx, θy ← U(0, 1);
φf,i ← |xi| · e2iπθx ;
φg,i ← |yi| · e2iπθy ;
end

2: (fR, gR)←
(

FFT-1((φf,i)i≤d/2), FFT-1((φg,i)i≤d/2)
)
;

3: (f , g)← (⌊fR
i ⌉)i≤d/2, (⌊gR

i ⌉)i≤d/2;

4: (φ(f), φ(g))← (FFT(f), FFT(g));
5: for i = 1 to d/2 do

if q/α2 > |φi(f)|2 + |φi(g)|2 or α2q < |φi(f)|2 + |φi(g)|2 then
restart;

end
end
return (f , g);

Table 5 is the asymptotic complexity of Sign in SOLMAE whose total complexity to complete
takes Θ(d log d).

Table 5: Asymptotic complexity of Sign in SOLMAE
No. Computation Complexity Location Comment(d is degree)

1 H(r∥M) Θ(d) Step 2 of Alg. 5 This is same as HashToPoint()
2 FFT(c) Θ(d log d) Step 3 of Alg. 5
3 Sample(ĉ, sk) Θ(d log d) Step 4 of Alg. 5 See below †
4 FFT-1(ŝ1) Θ(d log d) Step 5 of Alg. 5
5 Compress(s1) Θ(d) Step 6 of Alg. 5 Explained in Table 2

Total Complexity of Sign: Θ(d log d)
† In Sample (Algorithm 4 in [10],) there are some polynomial multiplications and
additions which take Θ(d log d) and calls PeikertSampler(Algorithm 5 in[10]) two times.
In PeikerSampler, Step 1 takes Θ(d) (Generating normal vector with N–sampler takes
Θ(d) and multiplying Σ takes Θ(d) since Σ is a diagonal matrix.). Steps 2, 3, and 5 take
Θ(d log d) since FFT computation is required. Step 4 takes Θ(d) simply since the loop
iterates d times.

The asymptotic complexity of verification in SOLMAE is omitted since the algorithm is identical
to verification in Falcon. Our asymptotic analysis discussed here is the first step to estimate
the execution time of Falcon and SOLMAE roughly. We can claim that KeyGen, Sign, Verif
procedures take Θ(d log d) together with Falcon and SOLMAE here. This analysis does imply
that Falcon and SOLMAE show the same execution times regardless of its implemented platform.

6 Performance analysis

As mentioned before, we has verified asymptotic complexities of Falcon and SOLMAE in KeyGen,
Sign and Verif procedures and suggested that both take asymptotically similar Θ(d log(d))
complexity that is difficult to evaluate their exact performance. Using the reference implementations
of Falcon and SOLMAE which will be available over the github in C language under the same
platform, we discuss the performance comparison between them and show the specific execution
times here.
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6.1 Description of platform

Timings below have been collected on two cores of Intel Xeon CPU E5–2640 v3 2.60GHz 4.00GB
RAM under Ubuntu–20.04 server using CFLAGS = -Wall -Wextra -march=native -O3 compiling
flag of gcc. All the tests were executed 10,000 times and the average value were taken for the sake
of the good evaluation.

6.2 Performance of our reference implementation

For this test, the input messages are chosen 1,024 byte randomly per 10,000 times with each count
using different key pairs. Falcon performance numbers are also provided using the speed tool
included in the official code archive

At first we checked and compared the performance of the Falconwith different security level
having 256, 512 (NIST level I) and 1024 (NIST level V) in Fig. 5. The Sign procedure consumes
more time than KeyGen and Verif procedures.

Fig. 5: Performance Comparison of Falcon-{256, 512, 1024}

The average clock cycle and time (µs) during KeyGen, Sign and Verif procedures using
SOLMAE-512 and SOLMAE-1024 are shown in Table 6.

From this experiments, we found that SOLMAE without compression and decompression
consistently outperforms Falcon in and Sign and Verif procedures in equal dimension, while its
KeyGen procedure is slightly slower due to its extra computation of additional data for the private
key in advance. The time to execute compression and decompression can be ignored.

The average time in µs of internal common computations such as FFT, point-wise multiplication
and Gaussian sampling, etc. which are commonly used for SOLMAE-{512 and 1024} also Falcon
as well are shown in Table 7.

On the other hand, in Table 8 we made performance comparison of SOLMAE-512 with Shake-
128 and ECDSA P256r1 with SHA256 provided by Dreamsecurity Engineer [8] using our publicly
available SOLMAE-512 C language reference implementation under their computing platform.
Compared with ECDSA, the keygen of SOLMAE-512 is slower than EDCSA P256r1 by online
computation 6. But the signing and verification of SOLMAE-512 is about 10 times more faster
6 Note that keygen of SOLMAE can be operated online/offline together in parallel.
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Table 6: Performance comparison of SOLMAE and Falcon

SOLMAE-512 SOLMAE-1024 Falcon–512 Falcon–1024

KeyGen time
Mcycles 58.77 137.76 33.65 98.65

time (ms) 22.6 52.97 12.94 37.93

pk size Bytes 896 1,792 896 1,792

Sign time
Kcycles 758.3 1,512.9 1,353.15 2,792.22

time (µs) 291.63 581.82 520.4 1,073.81

sgn size Bytes 666 1,375 666 1,280

Verif time
Kcycles 121.3 289.48 144.31 301.52

time (µs) 46.66 111.34 55.51 115.97

Table 7: Average time (µs) of common computations for SOLMAE-{512 and 1024}

FFT poly-add pointwise-mult FFT-mul-adj poly-div-FFT discrete-Gauss Gaussian- sampling

SOLMAE-512 4.62 0.17 0.21 0.21 0.68 68.85 46.06

SOLMAE-1024 8.94 0.3 0.4 0.38 1.37 139.07 89.99

than those of ECDSA P256r1 currently used in TSL or SSL which makes no speed degradation
when we apply quantum-secure SOLMAE for PKI and various security applications.

Table 8: Comparison of SOLMAE and ECDSA
SOLMAE ECDSA

Specification 512 P256r1

Size(Bytes) pk 1,792 65
sgn 1,375 32

Time KeyGen(ms) 30.21 2.53
Sign(µs) 288.2 2,582.8
Verif(µs) 55.6 7,744.7

7 Concluding Remarks

Falcon is claimed to have the advantage of providing short public keys and signatures as well
as high–security levels; plagued by a contrived signing algorithm, not very fast for signing and
hard to parallelize; very little flexibility in terms of parameter settings. However, SOLMAE has a
simple, fast, parallelizable signing algorithm, with flexible parameters with its novel key generation
algorithm.

In this paper, after giving a brief description of the specification of Falcon and SOLMAE, we
found that their asymptotic computational complexity of KeyGen, Sign and Verif procedures take
Θ(n log n) simultaneously. Also, our computer experiments using their C language implementation
exhibit empirically that KeyGen of SOLMAE takes a bit longer time than that of SOLMAE, but
executes faster Sign procedure. Amazingly enough, the Sign and Verif procedures of SOLMAE-
512 is about 10 times more faster than those of ECDSA P256r1 currently used in TSL or SSL.
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Further work such as elaborated analysis of computational complexity on Falcon and SOLMAE
asymptotically is left to do next.
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